6 resultados para Effects and Usages

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Variants in the complement cascade genes and the LOC387715/HTRA1, have been widely reported to associate with age-related macular degeneration (AMD), the most common cause of visual impairment in industrialized countries. METHODS/PRINCIPAL FINDINGS: We investigated the association between the LOC387715 A69S and complement component C3 R102G risk alleles in the Finnish case-control material and found a significant association with both variants (OR 2.98, p = 3.75 x 10(-9); non-AMD controls and OR 2.79, p = 2.78 x 10(-19), blood donor controls and OR 1.83, p = 0.008; non-AMD controls and OR 1.39, p = 0.039; blood donor controls), respectively. Previously, we have shown a strong association between complement factor H (CFH) Y402H and AMD in the Finnish population. A carrier of at least one risk allele in each of the three susceptibility loci (LOC387715, C3, CFH) had an 18-fold risk of AMD when compared to a non-carrier homozygote in all three loci. A tentative gene-gene interaction between the two major AMD-associated loci, LOC387715 and CFH, was found in this study using a multiplicative (logistic regression) model, a synergy index (departure-from-additivity model) and the mutual information method (MI), suggesting that a common causative pathway may exist for these genes. Smoking (ever vs. never) exerted an extra risk for AMD, but somewhat surprisingly, only in connection with other factors such as sex and the C3 genotype. Population attributable risks (PAR) for the CFH, LOC387715 and C3 variants were 58.2%, 51.4% and 5.8%, respectively, the summary PAR for the three variants being 65.4%. CONCLUSIONS/SIGNIFICANCE: Evidence for gene-gene interaction between two major AMD associated loci CFH and LOC387715 was obtained using three methods, logistic regression, a synergy index and the mutual information (MI) index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of insulin with bovine aorta endothelial (BAE) cells has been studied to determine the effect of insulin on endothelial cells, and investigate the function of the insulin receptor in this cell type. BAE cell insulin receptor is similiar to insulin receptor in other cell types in the time to attain equilibrium binding, its physical properties in a solubilized assay system and affinity for insulin in the low nanomolar range. However, BAE cell insulin receptor has unusual properties in its interaction with insulin at 4$\sp\circ$C that include: (1) the inability to completely dissociate prebound $\sp{125}$I-insulin by dilution with excess insulin or acid rinse treatment, indicating that binding is not completely reversible (2) the inability to remove prebound insulin with trypsin and other proteases (3) the implication of disulfide complex formation during binding (4) the inability of pretreatment with trypsin to lower cell surface binding capacity and (5) the suppression of insulin binding by bacitracin. Interactions of insulin with the receptor at 37$\sp\circ$C showed that (1) BAE cells degrade insulin, but not as extensively as other cell types, and (2) an unusual biphasic interaction of insulin with the BAE cells is observed which is indicative of some regulatory mechanism which modulates binding affinity. Functional characterization of the BAE cell insulin receptor revealed that insulin-induced downregulation and phosphorylation of the receptor was observed, and the extent of these processes were comparable to that demonstrated in non-endothelial cell types. However, in contrast to other cell types, insulin did not stimulate deoxyglucose uptake in BAE cells. We were unable to confirm the receptor-mediated transport of insulin by the receptor across the endothelial cell monolayer as reported by a previous investigator. We could not demonstrate a role for the receptor to promote acute intracellular accumulation of insulin as postulated by several investigators. Thus, while BAE cell insulin receptor has many properties that are similiar to those in other cell types, it is distinctly different in its nondissociable binding at 4$\sp\circ$C, its interaction with insulin at 37$\sp\circ$C, and its functional role in the BAE cell. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular migration is essential to many normal cellular processes. In tumor cells, aberrant activation of the normal pathways regulating migration is one of the critical steps in the development of metastasis. Previously, I demonstrated for the first time that overexpression of Tiam1, a guanine nucleotide exchange factor (GNEF) for small G proteins in the Rho family, could alter migration in colorectal tumor cells. ^ This dissertation focuses on the roles of Tiam1 in promoting cell migration, survival, and metastasis of colorectal carcinoma cells, utilizing the model system I developed. To determine the in vivo phenotype of the migratory cell lines, athymic nude mice were injected with cells into the orthotopic site. Several of the mice injected with cells of increased migratory potential had metastases. Thus, the in vitro selection for increased migration resulted in increased metastatic potential in vivo, and therefore, the Tiam1-overexpressing cells provide a model to examine signal transduction pathways important to this process. ^ To examine effects of Tiam1 signaling on small G proteins critical to cellular functions associated with migration, I examined the activation status of the small G proteins Rac, Rho, and Cdc42. The cells of increased migratory potential have increased GTP-bound Rac and Rho, compared to control SW480 cells. Cells that overexpress Tiam1 are more migratory and are resistant to detachment-induced death, or anoikis. To determine which effects and phenotypes were Tiam1-specific, we utilized siRNA to downregulate Tiam1 expression. These results demonstrate that Tiam1 is sufficient but not required for the migration of colorectal carcinoma cells in our model system, and that the biologically selected cells have additional changes that promote migration besides the increase in Tiam1. I also show that Tiam1 protects colorectal carcinoma cells from detachment-induced death, but is not required for anoikis resistance in the biologically selected migratory cells. ^ In summary, my studies demonstrate a heretofore-unknown regulator of phenotypes critical to the development of colorectal carcinoma metastases, overexpression of Tiam1. Understanding the mechanism by which Tiam1 contributes to cellular migration and metastasis is crucial to developing desperately needed new therapies for colorectal carcinoma. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to assess the impact of the Arkansas Long-Term Care Demonstration Project upon Arkansas' Medicaid expenditures and upon the clients it serves. A Retrospective Medicaid expenditure study component used analyses of variance techniques to test for the Project's effects upon aggregated expenditures for 28 demonstration and control counties representing 25 percent of the State's population over four years, 1979-1982.^ A second approach to the study question utilized a 1982 prospective sample of 458 demonstration and control clients from the same 28 counties. The disability level or need for care of each patient was established a priori. The extent to which an individual's variation in Medicaid utilization and costs was explained by patient need, presence or absence of the channeling project's placement decision or some other patient characteristic was examined by multiple regression analysis. Long-term and acute care Medicaid, Medicare, third party, self-pay and the grand total of all Medicaid claims were analyzed for project effects and explanatory relationships.^ The main project effect was to increase personal care costs without reducing nursing home or acute care costs (Prospective Study). Expansion of clients appeared to occur in personal care (Prospective Study) and minimum care nursing home (Retrospective Study) for the project areas. Cost-shifting between Medicaid and Medicare in the project areas and two different patterns of utilization in the North and South projects tended to offset each other such that no differences in total costs between the project areas and demonstration areas occurred. The project was significant ((beta) = .22, p < .001) only for personal care costs. The explanatory power of this personal care regression model (R('2) = .36) was comparable to other reported health services utilization models. Other variables (Medicare buy-in, level of disability, Social Security Supplemental Income (SSI), net monthly income, North/South areas and age) explained more variation in the other twelve cost regression models. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metformin has antiproliferative effects through the activation of AMPK and has gained interest as an antineoplastic agent in several cancer types, although studies in endometrial cancer (EC) are limited. The aims of this project were to evaluate pathways targeted by metformin in EC, investigate mechanisms by which metformin exerts its antiproliferative effects, and explore rational combination therapies with other targeted agents. Three EC cell lines were used to evaluate metformin’s effect on cell proliferation, PI3K and Ras-MAPK signaling, and apoptosis. A xenograft mouse model was also used to evaluate the effects of metformin treatment on in vivo tumor growth. These preliminary studies demonstrated that K-Ras mutant cell lines exhibited a decreased proliferative rate, reduced tumor growth, and increased apoptosis in response to metformin compared to K-Ras wild-type cells. To test the hypothesis that mutant K-Ras may predict response to metformin, murine EC cells with loss of PTEN and expressing mutant K-RasG12D were transfected to re-express PTEN or have K-Ras silenced using siRNA. While PTEN expression did not alter response to metformin, cells in which K-Ras was silenced displayed reduced sensitivity to metformin. Mislocalization of K-Ras to the cytoplasm is associated with decreased signaling and induction of apoptosis. Metformin’s effect on K-Ras localization was analyzed by confocal microscopy in cells expressing oncogenic GFP-K-RasG12V. Metformin demonstrated concentration-dependent mislocalization of K-Ras to the cytoplasm. Mislocalization of K-Ras to the cytoplasm was confirmed in K-Ras mutant EC cells (Hec1A) by cell fractionation in response to metformin 1 and 5 mM (p=0.008 and p=0.004). This effect appears to be AMPK-independent as combined treatment with Compound C, an AMPK inhibitor, did not alter K-Ras localization. Furthermore, treatment of EC cells with metformin in combination with PI3K inhibitors resulted in a significant decrease in proliferation than either agent or metformin alone. While metformin exerts antineoplastic effects by activation of AMPK and decreased PI3K signaling, our data suggest that metformin may also disrupt localization of K-Ras and hence its signaling in an AMPK-independent manner. This has important implications in defining patients who may benefit from metformin in combination with other targeted agents, such as mTOR inhibitors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Psoralen plus UVA (PUVA) is used as a very effective treatment modality for various diseases, including psoriasis and cutaneous T-cell lymphoma. PUVA-induced immune suppression and/or apoptosis are thought to be responsible for the therapeutic action. However, the molecular mechanisms by which PUVA acts are not well understood. We have previously identified platelet-activating factor (PAF), a potent phospholipid mediator, as a crucial substance triggering ultraviolet B radiation-induced immune suppression. In this study, we used PAF receptor knockout mice, a selective PAF receptor antagonist, a COX-2 inhibitor (presumably blocking downstream effects of PAF), and PAF-like molecules to test the role of PAF receptor binding in PUVA treatment. We found that activation of the PAF pathway is crucial for PUVA-induced immune suppression (as measured by suppression of delayed type hypersensitivity to Candida albicans) and that it plays a role in skin inflammation and apoptosis. Downstream of PAF, interleukin-10 was involved in PUVA-induced immune suppression but not inflammation. Better understanding of PUVA's mechanisms may offer the opportunity to dissect the therapeutic from the detrimental (ie, carcinogenic) effects and/or to develop new drugs (eg, using the PAF pathway) that act like PUVA but have fewer side effects.