19 resultados para Ecological half-life
em DigitalCommons@The Texas Medical Center
Resumo:
The recognition of the importance of mRNA turnover in regulating eukaryotic gene expression has mandated the development of reliable, rigorous, and "user-friendly" methods to accurately measure changes in mRNA stability in mammalian cells. Frequently, mRNA stability is studied indirectly by analyzing the steady-state level of mRNA in the cytoplasm; in this case, changes in mRNA abundance are assumed to reflect only mRNA degradation, an assumption that is not always correct. Although direct measurements of mRNA decay rate can be performed with kinetic labeling techniques and transcriptional inhibitors, these techniques often introduce significant changes in cell physiology. Furthermore, many critical mechanistic issues as to deadenylation kinetics, decay intermediates, and precursor-product relationships cannot be readily addressed by these methods. In light of these concerns, we have previously reported transcriptional pulsing methods based on the c-fos serum-inducible promoter and the tetracycline-regulated (Tet-off) promoter systems to better explain mechanisms of mRNA turnover in mammalian cells. In this chapter, we describe and discuss in detail different protocols that use these two transcriptional pulsing methods. The information described here also provides guidelines to help develop optimal protocols for studying mammalian mRNA turnover in different cell types under a wide range of physiologic conditions.
Resumo:
Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.
Resumo:
The Wnt pathways contribute to many processes in cancer and developmental biology, with β-catenin being a key canonical component. P120-catenin, which is structurally similar to β-catenin, regulates the expression of certain Wnt target genes, relieving repression conferred by the POZ/ zinc-finger transcription factor Kaiso. In my first project, employing Xenopus embryos and mammalian cell lines, I found that the degradation machinery of the canonical Wnt pathway modulates p120-catenin protein stability, especially p120 isoform-1, through mechanisms shared with b-catenin. Exogenous expression of destruction-complex components such as GSK3b or Axin promotes p120-catenin degradation, and consequently, is able to rescue developmental phenotypes resulting from p120 over-expression during early Xenopus embryonic development. Conversely, as predicted, the in vivo depletion of either Axin or GSK3b coordinately increased p120 and b-catenin levels, while p120 levels decreased upon LRP5/6 depletion, which are positive modulators in the canonical Wnt pathway. At the primary sequence level, I resolved conserved GSK3b phosphorylation sites in p120’s (isoform 1) amino-terminal region. Point-mutagenesis of these residues inhibited the association of destruction complex proteins including those involved in ubiquitination, resulting in p120-catenin stabilization. Importantly, we found that two additional p120-catenin family members, ARVCF-catenin and d-catenin, in common with b-catenin and p120, associate with Axin, and are degraded in Axin’s presence. Thus, by similar means, it appears that canonical Wnt signals coordinately modulate multiple catenin proteins having roles in development and conceivably disease states. In my second project, I found that the Dyrk1A kinase exhibits a positive effect upon p120-catenin levels. That is, unlike the negative regulator GSK3b kinase, a candidate screen revealed that Dyrk1A kinase enhances p120-catenin protein levels via increased half-life. Dyrk1A is encoded by a gene located within the trisomy of chromosome 21, which contributes to mental retardation in Down Syndrome patients. I found that Dyrk1A expression results in increased p120 protein levels, and that Dyrk1A specifically associates with p120 as opposed to other p120-catenin family members or b-catenin. Consistently, Dyrk1A depletion in mammalian cell lines and Xenopus embryos decreased p120-catenin levels. I further confirmed that Dyrk overexpression and knock-down modulates both Siamois and Wnt11 gene expression in the expected manner based upon the resulting latered levels of p120-catenin. I determined that Dyrk expression rescues Kaiso depletion effects (gastrulation failure; increased endogenous Wnt11 expression), and vice versa. I then identified a putative Dyrk phosphorylation region within the N-terminus of p120-catenin, which may also be responsible for Dyrk1A association. I went on to make a phosphomimic mutant, which when over-expressed, had the predicted enhanced capacity to positively modulate endogenous Wnt11 and Siamois expression, and thereby generate gastrulation defects. Given that Dyrk1A modulates Siamois expression through stabilization of p120-catenin, I further observed that ectopic expression of Dyrk can positively influence b-catenin’s capacity to generate ectopic dorsal axes when ventrally expressed in early Xenopus embryos. Future work will investigate how Dyrk1A modulates the Wnt signaling pathway through p120-catenin, and possibly begin to address how dysfunction of Dyrk1A with respect to p120-catenin might relate to aspects of Down syndrome. In summary, the second phase of my graduate work appears to have revealed a novel aspect of Dyrk1A/p120-catenin action in embryonic development, with a functional linkage to canonical Wnt signaling. What I have identified as a “Dyrk1A/p120-catenin/Kaiso pathway” may conceivably assist in our larger understanding of the impact of Dyrk1A dosage imbalance in Down syndrome.
Resumo:
Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.
Resumo:
This laboratory developed human T-cell hybridomas which constitutively secrete suppressor factors (SF) capable of inhibiting immune responses (Hybridoma 6:589 (1987). The mechanisms by which human T-cell hybridoma-derived SFs (designated 160 and 169) and Jurkat leukemic T-cell line derived SF inhibit the proliferative response to mitogen by human PBMC were investigated. The Jurkat SF had a pI of 5.2 whereas the 160 and 169 SF had pI of 5.7 and 4.7 (two peaks) and 4.7, respectively. The SF was not transforming growth factor-beta based upon neutralization and iummunoprecipitation experiments with anti-TGF-beta polyclonal antibody. Il-2 production by human PBMC cultured with Con A or OKT3 mAb in the presence of SF was found to be inhibited by greater than 80%. The proliferative responses of SF treated PBMC could not be restored by addition of exogeneous human IL-2. Inhibition of the proliferative responses could not be reversed by addition of exogenous rIL-1, rIL-2 or rIL-4 alone or in paired combinations. The expression of IL-2 receptors (TAC Ag) on Con A activated cultures time points was not affected by treatment with any SFs. Both the 160 and 169 hybridoma-derived SFs were found to arrest PHA induced cell cycle progression in G$\sb0$/G$\sb1$ phase, whereas SF from the Jurkat T-cell line arrested progression in the S phase. Pretreatment of PBMC with SF prior to the addition of mitogen, followed by washing, did not alter the proliferative response of these PBMC nor their cell cycle progression suggesting that cell activation is necessary for these SF to inhibit proliferative responses. Northern blot analysis of total mRNA from mitogen stimulated PBMC in the presence of SF, revealed a time dependent accumulation of an IL-2 specific mRNA of increased size (2.8 kB) in addition to the expected 1.0 kB mature IL-2 message. Interferon-gamma mRNA was of the appropriate size but its half-life was prolonged in SF treated cultures. IL-2 receptor and IL-1 beta mRNA expression was not altered in these cells. ^
Resumo:
In this investigation, bromine-77 was produced with a medical cyclotron and imaged with gamma cameras. Br-77 emits a 240 kev photon with a half life of 56 hours. The C-Br bond is stronger than the C-I bond and bromine is not collected in the thyroid. Bromine can be used to label many organic molecules by methods analogous to radioiodination. The only North American source of Br-77 in the 70's and 80's was Los Alamos National Laboratory, but it discontinued production in 1989. In this method, a p,3n reaction on Br-77 produces Kr-77 which decays with a 1.2 hour half life to Br-77. A cyclotron generated 40 MeV proton beam is incident on a nearly saturated NaBr or LiBr solution contained in a copper or titanium target. A cooling chamber through which helium gas is flowed separates the solution from the cyclotron beam line. Helium gas is also flowed through the solution to extract Kr-77 gas. The mixture flows through a nitrogen trap where Kr-77 freezes and is allowed to decay to Br-77. Eight production runs were performed, three with a copper target and five with a titanium target with yields of 40, 104, 180, 679, 1080, 685, 762 and 118 uCi respectively. Gamma ray spectroscopy has shown the product to be very pure, however corrosion has been a major obstacle, causing the premature retirement of the copper target. Phantom and in-vivo rat nuclear images, and an autoradiograph in a rat are presented. The quality of the nuclear scans is reasonable and the autoradiograph reveals high isotope uptake in the renal parenchyma, a more moderate but uniform uptake in pulmonary and hepatic tissue, and low soft tissue uptake. There is no isotope uptake in the brain or the gastric mucosa. ^
Resumo:
Although the major metabolic pathways of cyclophosphamide are well established, the mechanism of antitumor drug selectivity is highly controversial. However, it is widely accepted that aldophosphamide, one of the primary metabolites, plays a crucial role in drug selectivity. In an attempt to gain a better understanding of the mechanism of selectivity of cyclophosphamide, a series of aldophosphamide analogs have been synthesized.^ The new analogs, unlike aldophosphamide, are relatively stable in neutral solution; however, they are converted rapidly to aldehydo intermediates in the presence of carboxylate esterase. Due to structural differences, these analogs may be classified into three different groups, arbitrarily designated as A, B, C, depending upon the facility with which the intermediate aldehydes form 4-hydroxy cyclic tautomers. The half-life of the aldehydo/4-hydroxy cyclic tautomeric mixture is longer for bis(acetoxy)aldophosphamide acetal I (a representative of group A), shorter for the n-ethyl analog III (B), and shortest for the N,N-dimethyl analog IV (C). The ratio of aldophosphamide: 4-hydroxycyclophosphamide at pseudoequilibrium is 1: 4 for compound I, 1: 2 for compound III and 0: 1 for compound IV. The therapeutic efficacy of these compounds are group A $>$ group B $>$ group C. It is apparent that the equilibrium position between the aldehydo and 4-hydroxy cyclic tautomers, which determines their stability, is a crucial determinant of both the cytotoxicity and antitumor selectivity. These findings, taken in conjunction with the aldehyde dehydrogenase selectivity hypothesis, may provide an explanation for the unique antitumor activity of cyclophosphamide. ^
Resumo:
Translation termination as a result of premature nonsense codon-incorporation in a RNA transcript can lead to the production of aberrant proteins with gain-of-function or dominant negative properties that could have deletrious effects on the cell. T-cell Receptor (TCR) genes acquire premature termination codons two-thirds of the time as a result of the error-prone programmed rearrangement events that normally occur during T-cell development. My studies have focused on the fate of TCR precursor mRNAs in response to in-frame nonsense mutations. ^ Previous published studies from our laboratory have shown that TCR precursor mRNAs are subject to nonsense mediated upregulation of pre-mRNA (NMUP). In this dissertation, I performed substitution and deletion analysis to characterize specific regions of TCR which are required to elicit NMUP. I performed frame- and factor-dependence studies to determine its relationship with other nonsense codon induced responses using several approaches including (i) translation dependence studies (ii) deletion and mutational analysis, as well as (iii) siRNA mediated knockdown of proteins involved. I also addressed the underlying molecular mechanism for this pre-mRNA upregulation by (i) RNA half-life studies using a c-fos inducible promoter, and (ii) a variety of assays to determine pre-mRNA splicing efficiency. ^ Using these approaches, I have identified a region of TCR that is both necessary and sufficient to elicit (NMUP). I have also found that neither cytoplasmic translation machinery nor the protein UPF1 are involved in eliciting this nuclear event. I have shown that the NMUP can be induced not only by nonsense and frameshift mutations, but also missense mutations that disrupt a cis splicing element in the exon that contains the mutation. However, the effect of nonsense mutations on pre-mRNA is unique and distinguishable from that of missense mutations in that nonsense mutations can upregulate pre-mRNA in a frame-dependent manner. Lastly, I provide evidence that NMUP occurs by a mechanism in which nonsense mutations inhibit the splicing of introns. In summary, I have found that TCR precursor mRNAs are subject to multiple forces involving both RNA splicing and translation that can either increase or decrease the levels of these precursor mRNAs. ^
Resumo:
Context: Despite tremendous strides in HIV treatment over the past decade, resistance remains a major problem. A growing number of patients develop resistance and require new therapies to suppress viral replication. ^ Objective: To assess the safety of multiple administrations of the anti-CD4 receptor (anti-CD4) monoclonal antibody ibalizumab given as intravenous (IV) infusions, in three dosage regimens, in subjects infected with human immunodeficiency virus (HIV-1). ^ Design: Phase 1, multi-center, open-label, randomized clinical trial comparing the safety, pharmacokinetics and antiviral activity of three dosages of ibalizumab. ^ Setting: Six clinical trial sites in the United States. ^ Participants: A total of twenty-two HIV-positive patients on no anti-retroviral therapy or a stable failing regimen. ^ Intervention: Randomized to one of two treatment groups in Arms A and B followed by non-randomized enrollment in Arm C. Patients randomized to Arm A received 10 mg/kg of ibalizumab every 7 days, for a total of 10 doses; patients randomized to Arm B received a total of six doses of ibalizumab; a single loading dose of 10 mg/kg on Day 1 followed by five maintenance doses of 6 mg/kg every 14 days, starting at Week 1. Patients assigned to Arm C received 25 mg/kg of ibalizumab every 14 days for a total of 5 doses. All patients were followed for safety for an additional 7 to 8 weeks. ^ Main Outcome Measures: Clinical and laboratory assessments of safety and tolerability of multiple administrations of ibalizumab in HIV-infected patients. Secondary measures of efficacy include HIV-1 RNA (viral load) measurements. ^ Results: 21 patients were treatment-experienced and 1 was naïve to HIV therapy. Six patients were failing despite therapy and 15 were on no current HIV treatment. Mean baseline viral load (4.78 log 10; range 3.7-5.9) and CD4+ cell counts (332/μL; range 89-494) were similar across cohorts. Mean peak decreases in viral load from baseline of 0.99 log10(1.11 log10, and 0.96 log 10 occurred by Wk 2 in Cohorts A, B and C, respectively. Viral loads decreased by >1.0 log10 in 64%; 4 patients viral loads were suppressed to < 400 copies/mL. Viral loads returned towards baseline by Week 9 with reduced susceptibility to ibalizumab. CD4+ cell counts rose transiently and returned toward baseline. Maximum median elevations above BL in CD4+ cell counts for Cohorts A, B and C were +257, +198 and +103 cells/μL, respectively and occurred within 3 Wks in 16 of 22 subjects. The half-life of ibalizumab was 3-3.5 days and elimination was characteristic of capacity-limited kinetics. Administration of ibalizumab was well tolerated. Four serious adverse events were reported during the study. None of these events were related to study drug. Headache, nausea and cough were the most frequently reported treatment emergent adverse events and there were no laboratory abnormalities related to study drug. ^ Conclusions: Ibalizumab administered either weekly or bi-weekly was safe, well tolerated, and demonstrated antiviral activity. Further studies with ibalizumab in combination with standard antiretroviral treatments are warranted.^
Resumo:
Multiple myeloma (MM) is a debilitating and incurable B-cell malignancy. Previous studies have documented that the hepatocyte growth factor (HGF) plays a role in the pathobiology of MM. The receptor tyrosine kinase MET induced signaling initiates when its ligand HGF binds to the MET receptor. However, the direct importance of MET in MM has not been elucidated. The present work used three different but complementary approaches to reduce MET protein levels or its activity to demonstrate the importance of MET in MM. ^ In the first approach, MET transcript and protein levels were reduced by directly targeting the cellular MET transcripts using shRNA retroviral infection techniques. This direct reduction of MET mRNA leads to a reduction of MET protein levels, which caused an inhibition of growth and induction of cell death. ^ In the second approach, a global transcription inhibitor flavopiridol was used as a potential pharmacological tool to reduce MET levels. MET has a short half-life of 30 min for mRNA and 4 hours for protein; therefore using a RNA pol II inhibitor such as flavopiridol would be a viable option to reduce MET levels. When using flavopiridol in MM cell lines, there was a reduction of MET transcript and protein levels, which was associated with the induction of cell death. ^ Finally in the last strategy, MET kinase activity was suppressed by MP470, a small molecule inhibitor that binds to the ATP binding pocket in the kinase domain. At concentrations where phosphorylation of MET was inhibited there was induction of cell death in MM cell lines and primary cells from patients. In addition, in MM cell lines there was a decrease in phosphorylation of AKT (ser473) and caspase-9 (ser196); downstream of MET, suggesting that the mechanism of action for survival may be through these cascade of events. ^ Overall, this study provides a proof-of-principle that MET is important for the survival of MM cell lines as well as primary plasma cells obtained from patients. Therefore, targeting MET therapeutically may be a possible strategy to treat patients with this debilitating disease of MM. ^
Resumo:
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that degrades aberrant mRNAs harboring premature termination codons (PTCs). Two out of three T-cell receptor β (TCRβ) transcripts carry PTCs as a result of error-prone programmed rearrangements that occur at this locus during lymphocyte maturation. PTCs decrease TCRβ mRNA levels to a much greater extent than mRNAs transcribed from non-rearranging genes. This robust decrease in TCRβ mRNA levels is not a unique characteristic of the T-cell environment or the TCRβ promoter. The simplest explanation for this is that PTC-bearing TCRβ mRNAs elicit a stronger NMD response. An alternative explanation is NMD collaborates with another mechanism to dramatically decrease PTC-bearing TCRβ mRNA levels. ^ In my dissertation, I investigated the molecular mechanism behind the strong decrease in TCRβ mRNA levels triggered by PTCs. To determine the location of this response, I performed mRNA half-life analysis and found that PTCs elicited more rapid TCRβ mRNA decay in the nuclear fraction, not the cytoplasmic fraction. Although decay was restricted to the nuclear fraction, PTC-bearing TCRβ transcript levels were extremely low in the cytoplasm, a phenomenon that I named the nonsense-codon induced partitioning shift (NIPS). I established that NIPS shares several qualities with NMD, including its dependence on translation and NMD factors. Several lines of evidence suggested that NIPS results from PTCs eliciting retention of TCRβ transcripts in the nuclear fraction. This retention, as well as rapid TCRβ mRNA decay, most likely occurs in either the nucleoplasm or the outer nuclear membrane, based on analysis of nuclear and cytoplasmic markers in the highly purified nuclei I used for my studies. To further address the location of decay, I asked whether nuclear or cytoplasmic RNA decay factors mediated the destruction of PTC-bearing mRNAs. My results suggested that a nuclear component of the 3'-to-5' exosome, as well as an endonucleolytic activity, are involved in the destruction of PTC-containing TCRβ mRNAs. Individual endogenous NMD substrates had differential requirements for nuclear and cytoplasmic exonucleases. In summary, my results provide evidence that PTCs trigger multiple mechanisms involving multiple decay factors to remove and regulate mRNAs in mammalian cells. ^
Resumo:
Patients living with a spinal cord injury (SCI) often develop chronic neuropathic pain (CNP). Unfortunately, the clinically approved, current standard of treatment, gabapentin, only provides temporary pain relief. This treatment can cause numerous adverse side effects that negatively affect the daily lives of SCI patients. There is a great need for alternative, effective treatments for SCI-dependent CNP. Minocycline, an FDA-approved antibiotic, has been widely prescribed for the treatment of acne for several decades. However, recent studies demonstrate that minocycline has neuroprotective properties in several pre-clinical rodent models of CNS trauma and disease. Pre-clinical studies also show that short-term minocycline treatment can prevent the onset of CNP when delivered during the acute stage of SCI and can also transiently attenuate established CNP when delivered briefly during the chronic stage of SCI. However, the potential to abolish or attenuate CNP via long-term administration of minocycline after SCI is unknown. The purpose of this study was to investigate the potential efficacy and safety of long-term administration of minocycline to abolish or attenuate CNP following SCI. A severe spinal contusion injury was administered on adult, male, Sprague-Dawley rats. At day 29 post-injury, I initiated a three-week treatment regimen of daily administration with minocycline (50 mg/kg), gabapentin (50 mg/kg) or saline. The minocycline treatment group demonstrated a significant reduction in below-level mechanical allodynia and above- level hyperalgesia while on their treatment regimen. After a ten-day washout period of minocycline, the animals continued to demonstrate a significant reduction in below-level mechanical allodynia and above-level hyperalgesia. However, minocycline-treated animals exhibited abnormal weight gain and hepatotoxicity compared to gapabentin-treated or vehicle-treated subjects.The results support previous findings that minocycline can attenuate CNP after SCI and suggested that minocycline can also attenuate CNP via long-term delivery of minocycline after SCI (36). The data also suggested that minocycline had a lasting effect at reducing pain symptoms. However, the adverse side effects of long-term use of minocycline should not be ignored in the rodent model. Gabapentin treatment caused a significant decrease in below-level mechanical allodynia and below-level hyperalgesia during the treatment regimen. Because gabapentin treatment has an analgesic effect at the concentration I administered, the results were expected. However, I also found that gabapentin-treated animals demonstrated a sustained reduction in pain ten days after treatment withdrawal. This result was unexpected because gabapentin has a short half-life of 1.7 hours in rodents and previous studies have demonstrated that pre-drug pain levels return shortly after withdrawal of treatment. Additionally, the gabapentin-treated animals demonstrated a significant and sustained increase in rearing events compared with all other treatment groups which suggested that gabapentin treatment was not only capable of reducing pain long-term but may also significantly improve trunk stability or improve motor function recovery.
Resumo:
Electrical synapses formed of the gap junction protein Cx36 show a great deal of functional plasticity, much dependent on changes in phosphorylation state of the connexin. However, gap junction turnover may also be important for regulating cell-cell communication, and turnover rates of Cx36 have not been studied. Connexins have relatively fast turnover rates, with short half-lives measured to be 1.5 to 3.5 hours in pulse-chase analyses of connexins (Cx26 and Cx43) in tissue culture cells and whole organs. We utilized HaloTag technology to study the turnover rate of Cx36 in transiently transfected HeLa cells. The HaloTag protein forms irreversible covalent bonds with chloroalkane ligands, allowing pulse-chase experiments to be performed very specifically. The HaloTag open reading frame was inserted into an internal site in the C-terminus of Cx36 designed not to disrupt the regulatory phosphorylation sites and not to block the C-terminal PDZ interaction motif. Functional properties of Cx36-Halo were assessed by Neurobiotin tracer coupling, live cell imaging, and immunostaining. For the pulse-chase study, transiently transfected HeLa cells were pulse labeled with Oregon Green (OG) HaloTag ligand and chase labeled at various times with tetramethylrhodamine (TMR) HaloTag ligand. Cx36-Halo formed large junctional plaques at sites of contact between transfected HeLa cells and was also contained in a large number of intracellular vesicles. The Cx36-Halo transfected HeLa cells supported Neurobiotin tracer coupling that was regulated by activation and inhibition of PKA in the same manner as wild-type Cx36 transfected cells. In the pulse-chase study, junctional protein labeled with the pulse ligand (OG) was gradually replaced by newly synthesized Cx36 labeled with the chase ligand (TMR). The half-life for turnover of protein in junctional plaques was 2.8 hours. Treatment of the pulse-labeled cells with Brefeldin A (BFA) prevented the addition of new connexins to junctional plaques, suggesting that the assembly of Cx36 into gap junctions involves the traditional ER-Golgi-TGN-plasma membrane pathway. In conclusion, Cx36-Halo is functional and has a turnover rate in HeLa cells similar to that of other connexins that have been studied. This turnover rate is likely too slow to contribute substantially to short-term changes in coupling of neurons driven by transmitters such as dopamine, which take minutes to achieve. However, turnover may contribute to longer-term changes in coupling.
Resumo:
Overexpression and amplification of HER2/neu have been documented in many primary tumors, most notably in breast. Not only do approximately 30% of breast cancer patients carry tumors that overexpress the gene, but those that do generally have shorter overall and disease-free survival times than patients with tumors expressing low levels of HER2/neu. Thus, overexpression of HER2/neu plays an important role in the pathogenesis of breast cancer. We have examined the mechanisms that result in HER2/neu overexpression in breast cancer by using, as a model system, established breast cancer cell lines that express much higher levels of HER2/neu mRNA than normal breast tissue while maintaining a near normal HER2/neu gene copy number. Nuclear run-on experiments indicate that the breast cancer cell lines MDA-MB453, BT483, and BT474 have an increased HER2/neu gene transcription rate. By using HER2/neu promoter-CAT constructs, we have found that the enhanced HER2/neu transcription rate in MDA-MB453 cells is due to activation of the gene in trans, while the enhanced transcription rate in BT483 cells is due to activation of the gene in either trans or cis. In BT474 cells, transcriptional upregulation is primarily due to gene amplification. Since the levels of increased transcription are not as high as the levels of HER2/neu mRNA in any of these three lines, post-transcriptional deregulation that increases HER2/neu expression must also be functioning in these cells. The half-life of HER2/neu mRNA was measured and found to be equivalent in these lines as in a control. Thus, the post-transcriptional deregulation is not increased stability of the HER2/neu transcript.^ Much work has been performed in characterizing the altered trans-acting factor involved in increased HER2/neu transcription in MDA-MB453 cells. Using promoter deletion constructs linked to a reporter gene, the region responsive to this factor was localized in the rat neu promoter. When human HER2/neu promoter constructs were used, the homologous sequence in the human promoter was identified. Furthermore, a number of protein/DNA complexes are detected when these promoter regions are used in gel mobility shift assays. UV-crosslinking experiments indicate DNA-binding proteins of roughly 110 kDa, 70 kDa, and 35 kDa are capable of interacting with the human promoter element. ^
Resumo:
A major portion of this thesis work was dedicated to study the nature and significance of spliced introns. The initial work was focused on studying the IVS1$\sb{\rm C\beta 1}$ intron from a T-cell receptor (TCR)-$\beta$ gene. Compared to an intron lariat control from adenovirus pre-mRNA that was spliced in vitro, IVS1$\sb{\rm C\beta 1}$ was debranched less efficiently by HeLa S100 extracts, although IVS1$\sb{\rm C\beta 1}$ also used the consensus branchpoint in vivo. Subcellular-fractionation analysis showed that most IVS1$\sb{\rm C\beta 1}$ lariats cofractionated with pre-mRNA in the nucleus, consistent with the possibility that intron degradation releases splicing factors which will be available for further rounds of splicing. The half-life of IVS1$\sb{\rm C\beta 1}$ from the endogenous TCR-$\beta$ gene was measured using the general transcription inhibitor actinomycin D to be about $\sim$15 min, which was similar to that of unstable mRNAs such as c-myc mRNA.^ The general transcription inhibitor DRB was also used for intron stability analysis. Unexpectedly, DRB decreased intron and pre-mRNA levels only initially, it later increased the levels of intron-containing RNAs. Inhibition of transcription initiation appeared to be the major early effect (the reduction phase); whereas enhanced premature transcription termination was dominant later (the induction phase).^ Having established the procedures for studying in vivo spliced introns, this approach was applied to study the mechanism of nonsense-mediated downregulation (NMD), a phenomena in which premature termination codons (PTCs) decrease the levels of mRNAs. In this study, the novel intron-oriented approach was applied to study the mechanism of NMD. The levels of spliced introns immediately upstream and downstream of a PTC-bearing exon in a TCR-$\beta$ gene were identified and analyzed along with their pre-mRNA. Although PTC reduced the mRNA levels by 4 to 9 fold, the steady-state levels of spliced introns and the pre-mRNA-to-intron ratios were not significantly altered, indicating that the PTC did not significantly inhibit TCR-$\beta$ RNA splicing. Consistent with this conclusion, the half-lives of the PTC$\sp+$ and PTC$\sp-$ pre-mRNA were similar. The protein synthesis inhibitor cyclohexmide (CHX) upregulated the levels of the PTC$\sp+$ mRNA over 10 fold without affecting the levels of the spliced introns, suggesting that the reversal effect of CHX was through stabilization, not production. These results indicated that inhibition of splicing could not be the major mechanism for the NMD pathway of the TCR-$\beta$ gene, instead, suggesting that mRNA destabilization may be more important. (Abstract shortened by UMI.) ^