15 resultados para ENZYME

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrophoretic variants at four additional enzyme loci--two esterases (Est-2, Est-3), retinal lactate dehydrogenase (LDH-1) and mannose phosphate isomerase (MPI)--among three species and four subspecies of fish of the genus Xiphophorus were observed. Electrophoretic patterns in F1 hybrid heterozygotes confirmed the monomeric structures of MPI and the esterase and the tetrametric structure of LDH in these fishes. Variant alleles of all four loci displayed normal Mendelian segregation in backcross and F2 hybrids. Recombination data from backcross hybrids mapped with Haldane's mapping function indicate the four loci to be linked as Est-2--0.43--Est3--0.26--LDH-1--0.19--MPI. Significant interference was detected and apparently concentrated in the Est-3 to MPI region. No significant sex-specific differences in recombination were observed. This group (designated linkage group II) was shown to assort independently from the three loci of linkage group I (adenosine deaminase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase) and from glyceraldehyde-3-phosphate dehydrogenase and two isocitrate dehydrogenase loci. Evidence for conservation of the linkage group, at least in part, in other vertebrate species is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-point linkage group comprised of loci coding for adenosine deaminase (ADA), glucose-6-phosphate dehydrogenase (G6PDH), and 6-phospho-gluconate dehydrogenase (6PGD) is described in fish of the genus Xiphophorus (Poeciliidae). The alleles at loci in this group were shown to assort independently from the alleles at three other loci--isocitrate dehydrogenase 1 and 2, and glyceraldehyde-3-phosphate dehydrogenase 1. Alleles at the latter three loci also assort independently from each other. Data were obtained by observing the segregation of electrophoretically variant alleles in reciprocal backcross hybrids derived from crosses between either X. helleri guentheri or X. h. strigatus and X. maculatus. The linkage component of chi2 was significant (less than 0.01) in all crosses, indicating that the linkage group is conserved in all populations of both species of Xiphophorus examined. While data from X. h. guentheri backcrosses indicate the linkage relationship ADA--6%--G6PDH--24%--6PGD, and ADA--29%--6PGD (30% when corrected for double crossovers), data from backcrosses involving strigatus, while supporting the same gene order, yielded significantly different recombination frequencies. The likelihood of the difference being due to an inversion could not be separated from the possibility of a sex effect on recombination in the present data. The linkage of 6PGD and G6PDH has been shown to exist in species of at least three classes of vertebrates, indicating the possibility of evolutionary conservation of this linkage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis exists as two major and one minor ionic form in the macrophage cell line, RAW 264. The forms have the same molecular weight, 55,000, but differ in their isoelectric points, 5.2, 5.1, and 4.9-5.0. The hypothesis that phosphorylation accounts for the differences in the two major ionic forms and that phosphorylation is involved in the regulation of enzyme activity was investigated. Metabolic-radiolabeling of cells with $\sp{32}$P-orthophosphate indicated that only one of the major forms of the protein can be explained by phosphorylation: treatment of purified ODC with alkaline phosphatase resulted in the loss of the phosphorylated form of the protein, pl 5.1, with a concomitant increase in the unphosphorylated, pl 5.2, form of the protein. Characterization of the phosphorylation sites showed that serine was the present. Tryptic digests of $\sp{32}$P-labeled ODC, analyzed by either two dimensional tryptic peptide mapping or reverse-phase HPLC, contained only one major radiolabeled peptide.^ The role phosphorylation plays in the regulation of enzyme activity was also investigated. Treatment of purified ODC with alkaline phosphatase resulted in the loss of enzyme activity. A positive linear correlation exists between enzyme activity and the amount of phosphorylated form of the protein present.^ To ascertain if the two major forms of the protein were also found in animal cells, ODC was immunoprecipitated from various rat tissues, fractionated by isoelectric focusing, and detected by immunoblotting. ODC was present in rat tissues in a single major form, which comigrated with the pl 5.1, phosphorylated form of ODC present in RAW 264 cell.^ This study concludes that ODC exists as a phosphorylated form, pl 5.1, and an unphosphorylated form, pl 5.2 in RAW 264 cells. The amount of the phosphorylated form of ODC correlates well with the enzyme activity. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coronary heart disease (CHD) is the leading cause of death in the United States. Recently, renin-angiotensin system (RAS) was found associated with atherosclerosis formation, with angiotensin II inducing vascular smooth muscle cell growth and migration, platelet activation and aggregation, and stimulation of plasminogen activator inhibitor-1. Angiotensin II is converted from angiotensin I by angiotensin I-converting enzyme (ACE) and this enzyme is mainly genetically determined. The ACE gene has been assigned to chromosome 17q23 and an insertion/deletion (I/D)polymorphism has been characterized by the presence/absence of a 287 bp fragment in intron 16 of the gene. The two alleles form three genotypes, namely, DD, ID and II and the DD genotype has been linked to higher plasma ACE levels and cell ACE activity.^ In this study, the association between the ACE I/D polymorphism and carotid artery wall thickness measured by B-mode ultrasound was investigated in a biracial sample, and the association between the gene and incident CHD was investigated in whites and if the gene-CHD association in whites, if any, was due to the gene effect on atherosclerosis. The study participants are from the prospective Atherosclerosis Risk in Communities (ARIC) Study, including adults aged 45 to 65 years. The present dissertation used a matched case-control design for studying the associations of the ACE gene with carotid artery atherosclerosis and an unmatched case-control design for the association of the gene with CHD. A significant recessive effect of the D allele on carotid artery thickness was found in blacks (OR = 3.06, 95% C.I: 1.11-8.47, DD vs. ID and II) adjusting for age, gender, cigarette smoking, LDL-cholesterol and diabetes. No similar associations were found in whites. The ACE I/D polymorphism is significantly associated with coronary heart disease in whites, and while stratifying data by carotid artery wall thickness, the significant associations were only observed in thin-walled subgroups. Assuming a recessive effect of the D allele, odds ratio was 2.84 (95% C.I:1.17-6.90, DD vs. ID and II) and it was 2.30 (95% C.I:1.22-4.35, DD vs. ID vs. II) assuming a codominant effect of the D allele. No significant associations were observed while comparing thick-walled CHD cases with thin-walled controls. Following conclusions could be drawn: (1) The ACE I/D polymorphism is unlikely to confer appreciable increase in the risk of carotid atherosclerosis in US whites, but may increases the risk of carotid atherosclerosis in blacks. (2) ACE I/D polymorphism is a genetic risk factor for incident CHD in US whites and this effect is separate from the chronic process of atherosclerosis development. Finally, the associations observed here are not causal, since the I/D polymorphism is in an intron, where no ACE proteins are encoded. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery and characterization of oncofetal proteins have led to significant advances in early cancer diagnosis and therapeutic monitoring of patients undergoing cancer chemotherapy. These tumor-associated antigens are presently measured by sensitive, specific immunoassay techniques based on the detection of minute amounts of labeled antigen or antibody incorporated into immune complexes, which must be isolated from free antigen and antibody.^ Since there are several disadvantages with using radioisotopes, the most common immunolabel, one major objective was to prepare covalently coupled enzyme-antibody conjugates and evaluate their use as a practical alternative to radiolabeled immune reagents. An improved technique for the production of enzyme-antibody conjugates was developed that involves oxidizing the carbohydrate moieties on a glycoprotein enzyme, then introducing antibody in the presence of polyethylene glycol (PEG). Covalent enzyme-antibody conjugates involving alkaline phosphatase and amyloglucosidase were produced and characterized.^ In order to increase the sensitivity of detecting the amyloglucosidase-antibody conjugate, an enzyme cycling assay was developed that measures glucose, the product of maltose cleavage by amyloglucosidase, in the picomole range. The increased sensitivity obtained by combined usage of the amyloglucosidase-antibody conjugate and enzyme cycling assay was then compared to that of conventional enzyme immunoassay (EIA).^ For immune complex isolation, polystyrene tubes and protein A-bearing Staphylococcus aureus were evaluated as solid phase matrices, upon which antibodies can be immobilized. A sandwich-type EIA, using antibody-coated S. aureus, was developed that measures human albumin (HSA) in the nanogram range. The assay, using an alkaline phosphatase-anti-HSA conjugate, was applied to the determination of HSA in human urine and evaluated extensively for its clinical applicability.^ Finally, in view of the clinical significance of alpha-fetoprotein (AFP) as an oncofetal antigen and the difficulty with its purification for use as an immunogen and assay standard, a chemical purification protocol was developed that resulted in a high yield of immunochemically pure AFP. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this thesis lies in the development of a sensitive method for the analysis of protein primary structure which can be easily used to confirm the DNA sequence of a protein's gene and determine the modifications which are made after translation. This technique involves the use of dipeptidyl aminopeptidase (DAP) and dipeptidyl carboxypeptidase (DCP) to hydrolyze the protein and the mass spectrometric analysis of the dipeptide products.^ Dipeptidyl carboxypeptidase was purified from human lung tissue and characterized with respect to its proteolytic activity. The results showed that the enzyme has a relatively unrestricted specificity, making it useful for the analysis of the C-terminal of proteins. Most of the dipeptide products were identified using gas chromatography/mass spectrometry (GC/MS). In order to analyze the peptides not hydrolyzed by DCP and DAP, as well as the dipeptides not identified by GC/MS, a FAB ion source was installed on a quadrupole mass spectrometer and its performance evaluated with a variety of compounds.^ Using these techniques, the sequences of the N-terminal and C-terminal regions and seven fragments of bacteriophage P22 tail protein have been verified. All of the dipeptides identified in these analysis were in the same DNA reading frame, thus ruling out the possibility of a single base being inserted or deleted from the DNA sequence. The verification of small sequences throughout the protein sequence also indicates that no large portions of the protein have been removed after translation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ubiquitination is an essential process involved in basic biological processes such as the cell cycle and cell death. Ubiquitination is initiated by ubiquitin-activating enzymes (E1), which activate and transfer ubiquitin to ubiquitin-conjugating enzymes (E2). Subsequently, ubiquitin is transferred to target proteins via ubiquitin ligases (E3). Defects in ubiquitin conjugation have been implicated in several forms of malignancy, the pathogenesis of several genetic diseases, immune surveillance/viral pathogenesis, and the pathology of muscle wasting. However, the consequences of partial or complete loss of ubiquitin conjugation in multi-cellular organisms are not well understood. Here, we report the characterization of nba1, the sole E1 in Drosophila. We have determined that weak and strong nba1 alleluias behave genetically different and sometimes in opposing phenotypes. For example, weak uba1 alleluias protect cells from cell death whereas cells containing strong loss-of-function alleluias are highly apoptotic. These opposing phenotypes are due to differing sensitivities of cell death pathway components to ubiquitination level alterations. In addition, strong uba1 alleluias induce cell cycle arrest due to defects in the protein degradation of Cyclins. Surprisingly, clones of strong uba1 mutant alleluias stimulate neighboring wild-type tissue to undergo cell division in a non-autonomous manner resulting in severe overgrowth phenotypes in the mosaic fly. I have determined that the observed overgrowth phenotypes were due to a failure to downregulate the Notch signaling pathway in nba1 mutant cells. Aberrant Notch signaling results in the secretion of a local cytokine and activation of JAK/STAT pathway in neighboring cells. In addition, we elucidated a model describing the regulation of the caspase Dronc in surviving cells. Binding of Dronc by its inhibitor Diap1 is necessary but not sufficient to inhibit Dronc function. Ubiquitin conjugation and Uba1 function is necessary for the negative regulation of Dronc. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five permanent cell lines were developed from Xiphophorus maculatus, X. helleri, and their hybrids using three tissue sources, including adults and embryos of different stages. To evaluate cell line gene expression for retention of either tissue-of-origin-specific or ontogenetic stage-specific characters, the activity distribution of 44 enzyme loci was determined in 11 X. maculatus tissues, and the developmental genetics of 17 enzyme loci was charted in X. helleri and in helleri x maculatus hybrids using starch gel electrophoresis. In the process, eight new loci were discovered and characterized for Xiphophorus.^ No Xiphophorus cell line showed retention of tissue-of-origin-specific or ontogenetic stage-specific enzyme gene expressional traits. Instead, gene expression was similar among the cell lines. One enzyme, adenosine deaminase (ADA) was an exception. Two adult-origin cell lines expressed ADA, whereas, three cell lines derived independently from embryos did not. ADA('-) expression of Xiphophorus embryo-derived cell lines may represent retention of an embryonic gene expressional trait. In one cell line (T(,3)) derived from 13 pooled interspecific hybrid (F(,2)) embryos, shifts with time were observed at enzyme loci polymorphic between the two species. This suggested shifts in ratios of cells of different genotypes in the population rather than unstable gene expression in one dominant cell type.^ Verification of this hypothesis was attempted by cloning the culture--seeking clones having different genetic signatures. The large number of loci electrophoretically polymorphic between the two species and whose alleles segregated independently into the 13 progeny from which this culture originated almost guaranteed the presence of different genetic signatures (lineages) in T(,3).^ Seven lineages of cells were found within T(,3), each expressing genotypes at some loci not characteristic of the expression of the culture-as-a-whole, supporting the hypothesis tested. Quantitative studies of ADA expression in the whole culture (ADA('-)) and in clones of these seven lineages suggested the predominance in T(,3) of ADA deficient cell lineages, although moderate to high ADA output clones also occurred. Thus, T(,3) has the potential to shift phenotypes from ADA('-) to ADA('+) by simply changing proportions of its constituent cell types, demonstrating that such shifts can occur in any cell culture containing cells of mixed expressional characteristics.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential for the direct analysis of enzyme reactions by fast atom bombardment (FAB) mass spectrometry has been investigated. Conditions are presented for the maintenance of enzymatic activity under FAB conditions along with FAB mass spectrometric data showing that these conditions can be applied to solutions of enzyme and substrate to follow enzymatic reactions inside the mass spectrometer in real-time. In addition, enzyme kinetic behavior under FAB mass spectrometric conditions is characterized using trypsin and its assay substrate, TAME, as an enzyme-substrate reaction model. These results show that two monitoring methods can be utilized to follow reactions by FAB mass spectrometry. The advantages of each method are discussed and illustrated by obtaining kinetic parameters from the direct analysis of enzyme reactions with assay or peptide substrates. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Medulloblastoma is a type of brain cancer that accounts for approximately 7-8% of all intracranial tumors and 20-30% of pediatric brain tumors. It is the most common type of malignant brain tumor in childhood. It was reported that majority of survivors with medulloblastoma have social problems, endocrine deficits, and neurological complications. Furthermore, all had significant deficits in neurocognitive functioning. Glutathione S-transferases belong to a family of isoenzymes that catalyze the glutathione conjugation of a variety of electrophilic compounds. ^ Objective. We aimed to determine whether the development of neurocognitive impairment is associated with GST polymorphisms among children and adolescents diagnosed with medulloblastoma (MB) after radiation therapy. ^ Methods. A pilot study composing of 16 children and adolescents diagnosed with MB at Texas Children's Cancer Center was conducted. The t-test was used to determine if the GST polymorphisms were related to neurocognitive impairment and logistic regression was performed to explore association between GST polymorphisms and gender, age at diagnosis, race/ethnicity, and risk group. ^ Results. An association was observed between GSTT1 polymorphism and cognitive impairment one year after radiation and GSTM1 polymorphism two years after radiation. It was observed that patients with GSTT1 null genotype have lower performance IQ (p=0.03) and full scale IQ (p=0.02) one year after radiation and patients with GSTM1 null genotype have lower verbal IQ (p=0.02) two years after radiation. Patients under age 8 have a statistically non-significant higher risk of having not null genotypes compared to those older than age 8 (OR= 7.5, 95%CI: 0.62-90.65 and OR= 2.63, 95%CI: 0.30-23.00 for GSTT1 and GSTM1 respectively). ^ Conclusion. There was a significant association between GSTT1 polymorphism and cognitive impairment one year after radiation and between GSTM1 polymorphism and cognitive impairment two years after radiation. Further large scale studies may be needed to confirm this finding and to examine the underlying mechanism of neurocognitive impairments after treatment of medulloblastoma patients.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection of malarial sporozoites by a double antibody sandwich enzyme linked immunosorbent assay (ELISA) is described. This investigation utilized the Anopheles stephensi-Plasmodium berghei malaria model for the generation of sporozoites. Anti-sporozoite antibody was obtained from the sera of rats which had been bitten by An. stephensi with salivary gland sporozoites. Mosquitoes were irradiated prior to feeding on the rats to render the sporozoites non-viable.^ The assay employed microtiter plates coated with their rat anti-sporozoite antiserum or rat anti-sporozoite IgG. Intact and sonicated sporozoites were used as antigens. Initially, sporozoites were detected by an ELISA using staphylococcal protein A conjugated with alkaline phosphatase. Sporozoites were also detected using alkaline phosphatase or horseradish peroxidase conjugated to anti-sporozoite IgG. Best results were obtained using the alkaline phosphatase conjugate.^ This investigation included the titration of antigen, coating antibody and labelled antibody as well as studies of various incubation times. A radioimmunoassay (RIA) was also developed and compared with the ELISA for detecting sporozoites. Finally, the detection of a single infected mosquito in pools of 5 to 10 whole, uninfested ones was studied using both ELISA and RIA.^ Sonicated sporozoites were more readily detected than intact sporozoites. The lower limit of detection was approximately 500 sporozoites per ml. Results using ELISA or RIA were similar. The ability of the ELISA to detect a single infected mosquito in a pool of uninfected ones indicates that this technique has potential use in entomological field studies which aim at determining the vector status of anopheline mosquitoes. The potential of the ELISA for identifying sporozoites of different species of malaria is discussed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphatidylserine decarboxylase of E. coli, a cytoplasmic membrane protein, catalyzes the formation of phosphatidylethanolamine, the principal phospholipid of the organism. The activity of the enzyme is dependent on a covalently bound pyruvate (Satre and Kennedy (1978) J. Biol. Chem. 253, 479-483). This study shows that the enzyme consists of two nonidentical subunits, $\alpha$ (Mr = 7,332) and $\beta$ (Mr = 28,579), with the pyruvate prosthetic group in amide linkage to the amino-terminus of the $\alpha$ subunit. Partial protein sequence and DNA sequence analysis reveal that the two subunits are derived from a proenzyme ($\pi$ subunit, Mr = 35,893) through a post-translational event. During the conversion of the proenzyme to the $\alpha$ and $\beta$ subunits, the peptide bond between Gly253-Ser254 is cleaved, and Ser254 is converted to the pyruvate prosthetic group at the amino-terminus of the $\alpha$ subunit (Li and Dowhan (1988) J. Biol. Chem. 263, 11516-11522).^ The proenzyme cannot be detected in cells carrying either single or multiple copies of the gene (psd), but can be observed in a T7 RNA polymerase/promoter and transcription-translation system. The cleavage of the wild-type proenzyme occurs rapidly with a half-time on the order of 2 min. Changing of the Ser254 to cysteine (S254C) or threonine (S254T) slows the cleavage rate dramatically and results in mutants with a half-time for processing of around 2-4 h. Change of the Ser254 to alanine (S254A) blocks the cleavage of the proenzyme. The reduced processing rate with the mutations of the proenzyme is consistent with less of the functional enzyme being made. Mutants S254C and S254T produce $\sim$15% and $\sim$1%, respectively, of the activity of the wild-type allele, but can still complement a temperature-sensitive mutant of the psd locus. Neither detectable activity nor complementation is observed by mutant S254A. These results are consistent with the hydroxyl-group of the Ser254 playing a critical role in the cleavage of the peptide bond Gly253-Ser254 of the pro-phosphatidylserine decarboxylase, and support the mechanism proposed by Snell and co-workers (Recsei and Snell (1984) Annu. Rev. Biochem. 53, 357-387) for the formation of the prosthetic group of pyruvate-dependent decarboxylases. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was designed to determine the potential anticarcinogenic activity of naturally occurring coumarins and their mechanism of action. The results indicated that several naturally occurring coumarins including bergamottin, coriandrin, imperatorin, isopimpinellin, and ostruthin, to which humans are routinely exposed in the diet, were effective inhibitors and/or inactivators of CYP1A1-mediated ethoxyresorufin-O-dealkylase (EROD) or CYP2B1-mediated pentoxyresorufin-O-dealkylase (PROD) in mouse liver microsomes. In addition, bergamottin and corandrin were also found to be inhibitors of purified human P450 1A1 in vitro. Further studies with coriandrin revealed that this compound was a mechanism-based inactivator of P450 1A1 and covalently bound to the P450 1A1 apoprotein. In cultured mouse keratinocytes, bergamottin and coriandrin effectively inhibited the B(a) P metabolism and significantly decreased covalent binding of B(a) P and DMBA to keratinocyte DNA and anti-diol-epoxide-DNA adducts derived from both B(a) P and DMBA in keratinocytes. The data from in vivo experiments showed that bergamottin and coriandrin were potent inhibitors of covalent binding of B (a) P to epidermal DNA and the formation of (+) anti BPDE-DNA adduct, whereas imperatorin and isopimpinellin were more potent inhibitors of covalent binding of DMBA to epidermal DNA. The ability of coumarins to inhibit covalent binding of B (a) P to DNA in mouse epidermis was positively correlated with their inhibitory effect P450 1A1 in vitro, while the inhibitory effect of coumarins on covalent binding of DMBA to epidermal DNA was positively correlated with their inhibitory effects on P450 2B1 and negatively to their inhibitory activity toward P450 1A1. The data from tumor experiments indicated that bergamottin, ostruthin, and coriandrin inhibited tumor initiation by B (a) P in a two-stage carcinogenesis protocol. Bergamottin was most effective in this regard and produced a dose dependent inhibition of papilloma formation in these experiments. In addition, imperatorin was an effective inhibitor of skin tumorigenesis induced by DMBA in SENCAR mouse skin using both a two-stage and a complete carcinogenesis protocol. At dose levels higher than those effective against DMBA, imperatorin also inhibited tumor initiation by B (a) P. The results to date demonstrate that several naturally occurring coumarins possess the ability to block tumor initiation and tumorigenesis by PAHs such as B (a) P and DMBA through inhibition of the P450s involved in the metabolic activation of these hydrocarbons. A working model for the involvement of specific P450s in the metabolic activation of these two PAHs was proposed. ^