5 resultados para EDWARDS-ANDERSON MODEL
em DigitalCommons@The Texas Medical Center
Resumo:
ACCURACY OF THE BRCAPRO RISK ASSESSMENT MODEL IN MALES PRESENTING TO MD ANDERSON FOR BRCA TESTING Publication No. _______ Carolyn A. Garby, B.S. Supervisory Professor: Banu Arun, M.D. Hereditary Breast and Ovarian Cancer (HBOC) syndrome is due to mutations in BRCA1 and BRCA2 genes. Women with HBOC have high risks to develop breast and ovarian cancers. Males with HBOC are commonly overlooked because male breast cancer is rare and other male cancer risks such as prostate and pancreatic cancers are relatively low. BRCA genetic testing is indicated for men as it is currently estimated that 4-40% of male breast cancers result from a BRCA1 or BRCA2 mutation (Ottini, 2010) and management recommendations can be made based on genetic test results. Risk assessment models are available to provide the individualized likelihood to have a BRCA mutation. Only one study has been conducted to date to evaluate the accuracy of BRCAPro in males and was based on a cohort of Italian males and utilized an older version of BRCAPro. The objective of this study is to determine if BRCAPro5.1 is a valid risk assessment model for males who present to MD Anderson Cancer Center for BRCA genetic testing. BRCAPro has been previously validated for determining the probability of carrying a BRCA mutation, however has not been further examined particularly in males. The total cohort consisted of 152 males who had undergone BRCA genetic testing. The cohort was stratified by indication for genetic counseling. Indications included having a known familial BRCA mutation, having a personal diagnosis of a BRCA-related cancer, or having a family history suggestive of HBOC. Overall there were 22 (14.47%) BRCA1+ males and 25 (16.45%) BRCA2+ males. Receiver operating characteristic curves were constructed for the cohort overall, for each particular indication, as well as for each cancer subtype. Our findings revealed that the BRCAPro5.1 model had perfect discriminating ability at a threshold of 56.2 for males with breast cancer, however only 2 (4.35%) of 46 were found to have BRCA2 mutations. These results are significantly lower than the high approximation (40%) reported in previous literature. BRCAPro does perform well in certain situations for men. Future investigation of male breast cancer and men at risk for BRCA mutations is necessary to provide a more accurate risk assessment.
Resumo:
As the requirements for health care hospitalization have become more demanding, so has the discharge planning process become a more important part of the health services system. A thorough understanding of hospital discharge planning can, then, contribute to our understanding of the health services system. This study involved the development of a process model of discharge planning from hospitals. Model building involved the identification of factors used by discharge planners to develop aftercare plans, and the specification of the roles of these factors in the development of the discharge plan. The factors in the model were concatenated in 16 discrete decision sequences, each of which produced an aftercare plan.^ The sample for this study comprised 407 inpatients admitted to the M. D. Anderson Hospital and Tumor Institution at Houston, Texas, who were discharged to any site within Texas during a 15 day period. Allogeneic bone marrow donors were excluded from the sample. The factors considered in the development of discharge plans were recorded by discharge planners and were used to develop the model. Data analysis consisted of sorting the discharge plans using the plan development factors until for some combination and sequence of factors all patients were discharged to a single site. The arrangement of factors that led to that aftercare plan became a decision sequence in the model.^ The model constructs the same discharge plans as those developed by hospital staff for every patient in the study. Tests of the validity of the model should be extended to other patients at the MDAH, to other cancer hospitals, and to other inpatient services. Revisions of the model based on these tests should be of value in the management of discharge planning services and in the design and development of comprehensive community health services.^
Resumo:
The potential for significant human populations to experience long-term inhalation of formaldehyde and reports of symptomatology due to this exposure has led to a considerable interest in the toxicologic assessment of risk from subchronic formaldehyde exposures using animal models. Since formaldehyde inhalation depresses certain respiratory parameters in addition to its other forms of toxicity, there is a potential for the alteration of the actual dose received by the exposed individual (and the resulting toxicity) due to this respiratory effect. The respiratory responses to formaldehyde inhalation and the subsequent pattern of deposition were therefore investigated in animals that had received subchronic exposure to the compound, and the potential for changes in the formaldehyde dose received due to long-term inhalation evaluated. Male Sprague-Dawley rats were exposed to either 0, 0.5, 3, or 15 ppm formaldehyde for 6 hours/day, 5 days/week for up to 6 months. The patterns of respiratory response, deposition and the compensation mechanisms involved were then determined in a series of formaldehyde test challenges to both the upper and to the lower respiratory tracts in separate groups of subchronically exposed animals and age-specific controls (four concentration groups, two time points). In both the control and pre-exposed animals, there was a characteristic recovery of respiratory parameters initially depressed by formaldehyde inhalation to at or approaching pre-exposure levels within 10 minutes of the initiation of exposure. Also, formaldehyde deposition was found to remain very high in the upper and lower tracts after long-term exposure. Therefore, there was probably little subsequent effect on the dose received by the exposed individual that was attributable to the repeated exposures. There was a diminished initial minute volume response in test challenges of both the upper and lower tracts of animals that had received at least 16 weeks of exposure to 15 ppm, with compensatory increases in tidal volume in the upper tract and respiratory rate in the lower tract. However, this dose-related effect was probably not relevant to human risk estimation because this formaldehyde dose is in excess of that experienced by human populations. ^
Resumo:
Breast cancer is the most common non-skin cancer and the second leading cause of cancer-related death in women in the United States. Studies on ipsilateral breast tumor relapse (IBTR) status and disease-specific survival will help guide clinic treatment and predict patient prognosis.^ After breast conservation therapy, patients with breast cancer may experience breast tumor relapse. This relapse is classified into two distinct types: true local recurrence (TR) and new ipsilateral primary tumor (NP). However, the methods used to classify the relapse types are imperfect and are prone to misclassification. In addition, some observed survival data (e.g., time to relapse and time from relapse to death)are strongly correlated with relapse types. The first part of this dissertation presents a Bayesian approach to (1) modeling the potentially misclassified relapse status and the correlated survival information, (2) estimating the sensitivity and specificity of the diagnostic methods, and (3) quantify the covariate effects on event probabilities. A shared frailty was used to account for the within-subject correlation between survival times. The inference was conducted using a Bayesian framework via Markov Chain Monte Carlo simulation implemented in softwareWinBUGS. Simulation was used to validate the Bayesian method and assess its frequentist properties. The new model has two important innovations: (1) it utilizes the additional survival times correlated with the relapse status to improve the parameter estimation, and (2) it provides tools to address the correlation between the two diagnostic methods conditional to the true relapse types.^ Prediction of patients at highest risk for IBTR after local excision of ductal carcinoma in situ (DCIS) remains a clinical concern. The goals of the second part of this dissertation were to evaluate a published nomogram from Memorial Sloan-Kettering Cancer Center, to determine the risk of IBTR in patients with DCIS treated with local excision, and to determine whether there is a subset of patients at low risk of IBTR. Patients who had undergone local excision from 1990 through 2007 at MD Anderson Cancer Center with a final diagnosis of DCIS (n=794) were included in this part. Clinicopathologic factors and the performance of the Memorial Sloan-Kettering Cancer Center nomogram for prediction of IBTR were assessed for 734 patients with complete data. Nomogram for prediction of 5- and 10-year IBTR probabilities were found to demonstrate imperfect calibration and discrimination, with an area under the receiver operating characteristic curve of .63 and a concordance index of .63. In conclusion, predictive models for IBTR in DCIS patients treated with local excision are imperfect. Our current ability to accurately predict recurrence based on clinical parameters is limited.^ The American Joint Committee on Cancer (AJCC) staging of breast cancer is widely used to determine prognosis, yet survival within each AJCC stage shows wide variation and remains unpredictable. For the third part of this dissertation, biologic markers were hypothesized to be responsible for some of this variation, and the addition of biologic markers to current AJCC staging were examined for possibly provide improved prognostication. The initial cohort included patients treated with surgery as first intervention at MDACC from 1997 to 2006. Cox proportional hazards models were used to create prognostic scoring systems. AJCC pathologic staging parameters and biologic tumor markers were investigated to devise the scoring systems. Surveillance Epidemiology and End Results (SEER) data was used as the external cohort to validate the scoring systems. Binary indicators for pathologic stage (PS), estrogen receptor status (E), and tumor grade (G) were summed to create PS+EG scoring systems devised to predict 5-year patient outcomes. These scoring systems facilitated separation of the study population into more refined subgroups than the current AJCC staging system. The ability of the PS+EG score to stratify outcomes was confirmed in both internal and external validation cohorts. The current study proposes and validates a new staging system by incorporating tumor grade and ER status into current AJCC staging. We recommend that biologic markers be incorporating into revised versions of the AJCC staging system for patients receiving surgery as the first intervention.^ Chapter 1 focuses on developing a Bayesian method to solve misclassified relapse status and application to breast cancer data. Chapter 2 focuses on evaluation of a breast cancer nomogram for predicting risk of IBTR in patients with DCIS after local excision gives the statement of the problem in the clinical research. Chapter 3 focuses on validation of a novel staging system for disease-specific survival in patients with breast cancer treated with surgery as the first intervention. ^
Resumo:
Allergen-induced asthma is the leading form of asthma and a chronic condition worldwide. Common allergens are known to contribute to the pathogenesis of this disease. Murine models of allergic asthma have mostly used an intraperitoneal route of sensitization (not airway) to study this disease. Allergic asthma pathophysiology involves the activation of TH2-specific cells, which triggers production of IgE antibodies, the up-regulation of TH2-specific cytokines (i.e. IL-4, IL-5, IL-9 and IL-13), increased airway eosinophilia, and mucin hypersecretion. Although there are several therapeutics currently treating asthmatic patients, some of these treatments can result in drug tolerance and may be linked to increased mortality. CpG oligodeoxynucleotides (ODNs) is a synthetic ligand that targets Toll-like Receptor (TLR) 9. It has been evaluated as a therapeutic agent for the treatment of cancer, infectious diseases, and for treating allergy and asthma. PUL-042 is also a synthetic TLR ligand and is composed of two agonists against TLR2/6 heterodimer and TLR9. Previous studies have evaluated PUL-042 for its ability to confer resistance against bacterial and viral lung infection. These findings, combined with studies performed using CpG ODNs, led to speculation that PUL-042 dampens the immune response in allergen-induced asthma. My thesis research investigated airway route sensitization and airway delivery of PUL-042 to evaluate its effects in reducing an allergen-induced asthma phenotype in a murine model. The results of this study contribute to the foundation for future investigations to evaluate the efficacy of PUL-042 as a novel therapy in allergic-asthma disease.