8 resultados para Dynamic security assessment
em DigitalCommons@The Texas Medical Center
Resumo:
DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY by James Leroy Neihart, B.S. APPROVED: ______________________________David Followill, Ph.D. ______________________________Peter Balter, Ph.D. ______________________________Narayan Sahoo, Ph.D. ______________________________Kenneth Hess, Ph.D. ______________________________Paige Summers, M.S. APPROVED: ____________________________ Dean, The University of Texas Graduate School of Biomedical Sciences at Houston DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY A THESIS Presented to the Faculty of The University of Texas Health Science Center at Houston andThe University of TexasMD Anderson Cancer CenterGraduate School of Biomedical Sciences in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE by James Leroy Neihart, B.S. Houston, Texas Date of Graduation August, 2013 Acknowledgments I would like to acknowledge my advisory committee members, chair David Followill, Ph.D., Peter Balter, Ph.D, Narayan Sahoo, Ph.D., Kenneth Hess, Ph.D., Paige Summers M.S. and, for their time and effort contributed to this project. I would additionally like to thank the faculty and staff at the PTC-H and the RPC who assisted in many aspects of this project. Falk Pӧnisch, Ph.D. for his breath hold proton therapy treatment expertise, Matt Palmer and Jaques Bluett for proton dosimetry assistance, Matt Kerr for verification plan assistance, Carrie Amador, Nadia Hernandez, Trang Nguyen, Andrea Molineu, Lynda McDonald for TLD and film dosimetry assistance. Finally, I would like to thank my wife and family for their support and encouragement during my research and studies. Development and implementation of a dynamic heterogeneous proton equivalent anthropomorphic thorax phantom for the assessment of scanned proton beam therapy By: James Leroy Neihart, B.S. Chair of Advisory Committee: David Followill, Ph.D Proton therapy has been gaining ground recently in radiation oncology. To date, the most successful utilization of proton therapy is in head and neck cases as well as prostate cases. These tumor locations do not suffer from the resulting difficulties of treatment delivery as a result of respiratory motion. Lung tumors require either breath hold or motion tracking, neither of which have been assessed with an end-to-end phantom for proton treatments. Currently, the RPC does not have a dynamic thoracic phantom for proton therapy procedure assessment. Additionally, such a phantom could be an excellent means of assessing quality assurance of the procedures of proton therapy centers wishing to participate in clinical trials. An eventual goal of this phantom is to have a means of evaluating and auditing institutions for the ability to start clinical trials utilizing proton therapy procedures for lung cancers. Therefore, the hypothesis of this study is that a dynamic anthropomorphic thoracic phantom can be created to evaluate end-to-end proton therapy treatment procedures for lung cancer to assure agreement between the measured and calculated dose within 5% / 5 mm with a reproducibility of 2%. Multiple materials were assessed for thoracic heterogeneity equivalency. The phantom was designed from the materials found to be in greatest agreement. The phantom was treated in an end-to-end treatment four times, which included simulation, treatment planning and treatment delivery. Each treatment plan was delivered three times to assess reproducibility. The dose measured within the phantom was compared to that of the treatment plan. The hypothesis was fully supported for three of the treatment plans, but failed the reproducibility requirement for the most aggressive treatment plan.
Resumo:
Dynamic contrast agent-enhanced magnetic resonance imaging (DCE MRI) data, when analyzed with the appropriate pharmacokinetic models, have been shown to provide quantitative estimates of microvascular parameters important in characterizing the angiogenic activity of malignant tissue. These parameters consist of the whole blood volume per unit volume of tissue, v b, transport constant from the plasma to the extravascular, extracellular space (EES), k1 and the transport constant from the EES to the plasma, k2. Parameters vb and k1 are expected to correlate with microvascular density (MVD) and vascular permeability, respectively, which have been suggested to serve as surrogate markers for angiogenesis. In addition to being a marker for angiogenesis, vascular permeability is also useful in estimating tumor penetration potential of chemotherapeutic agents. ^ Histological measurements of the intratumoral microvascular environment are limited by their invasiveness and susceptibility to sampling errors. Also, MVD and vascular permeability, while useful for characterizing tumors at a single time point, have shown less utility in longitudinal studies, particularly when used to monitor the efficacy of antiangiogenic and traditional chemotherapeutic agents. These limitations led to a search for a non-invasive means of characterizing the microvascular environment of an entire tumor. ^ The overall goal of this project was to determine the utility of DCE MRI for monitoring the effect of antiangiogenic agents. Further applications of a validated DCE MRI technique include in vivo measurements of tumor microvascular characteristics to aid in determining prognosis at presentation and in estimating drug penetration. DCE MRI data were generated using single- and dual-tracer pharmacokinetic models with different molecular-weight contrast agents. The resulting pharmacokinetic parameters were compared to immunohistochemical measurements. The model and contrast agent combination yielding the best correlation between the pharmacokinetic parameters and histological measures was further evaluated in a longitudinal study to evaluate the efficacy of DCE MRI in monitoring the intratumoral microvascular environment following antiangiogenic treatment. ^
Resumo:
The heart is a remarkable organ. In order to maintain its function, it remodels in response to a variety of environmental stresses, including pressure overload, volume overload, mechanical or pharmacological unloading and hormonal or metabolic disturbances. All these responses are linked to the inherent capacity of the heart to rebuild itself. Particularly, cardiac pressure overload activates signaling pathways of both protein synthesis and degradation. While much is known about regulators of protein synthesis, little is known about regulators of protein degradation in hypertrophy. The ubiquitin-proteasome system (UPS) selectively degrades unused and abnormal intracellular proteins. I speculated that the UPS may play an important role in both qualitative and quantitative changes in the composition of heart muscle during hypertrophic remodeling. My study hypothesized that cardiac remodeling in response to hypertrophic stimuli is a dynamic process that requires activation of highly regulated mechanisms of protein degradation as much as it requires protein synthesis. My first aim was to adopt a model of left ventricular hypertrophy and determine its gene expression and structural changes. Male Sprague-Dawley rats were submitted to ascending aortic banding and sacrificed at 7 and 14 days after surgery. Sham operated animals served as controls. Effective aortic banding was confirmed by hemodynamic assessment by Doppler flow measurements in vivo. Banded rats showed a four-fold increase in peak stenotic jet velocities. Histomorphometric analysis revealed a significant increase in myocyte size as well as fibrosis in the banded animals. Transcript analysis showed that banded animals had reverted to the fetal gene program. My second aim was to assess if the UPS is increased and transcriptionally regulated in hypertrophic left ventricular remodeling. Protein extracts from the left ventricles of the banded and control animals were used to perform an in vitro peptidase assay to assess the overall catalytic activity of the UPS. The results showed no difference between hypertrophied and control animals. Transcript analysis revealed decreases in transcript levels of candidate UPS genes in the hypertrophied hearts at 7 days post-banding but not at 14 days. However, protein expression analysis showed no difference at either time point compared to controls. These findings indicate that elements of the UPS are downregulated in the early phase of hypertrophic remodeling and normalizes in a later phase. The results provide evidence in support of a dynamic transcriptional regulation of a major pathway of intracellular protein degradation in the heart. The discrepancy between transcript levels on the one hand and protein levels on the other hand supports post-transcriptional regulation of the UPS pathway in the hypertrophied heart. The exact mechanisms and the functional consequences remain to be elucidated.
Resumo:
Increasing numbers of children and adolescents are becoming vulnerable or orphaned due to the HIV/AIDS epidemic in Nyanza Province, Kenya. Research indicates food security remains a top concern for those caring for these children or adolescents. This study was a examined thinness, stunting, and perceptions about food availability in adolescents ages 10-17 years in Nyanza Province. No evidence was found suggesting orphaned adolescents experience greater amounts of stunting or thinness over non-orphaned adolescents in the province. Orphans did not perceive less available food in their households. Instead, predictors of thinness, stunting, or low perceptions of food availability included age, household facilities, perceptions of equal or unequal treatment in the household, and perceptions about the household's ability to provide them with basic needs. Findings suggest interventions aimed at decreasing malnutrition focus less on orphaned versus non-orphaned adolescents, but they should focus on adolescents made vulnerable due to lower socioeconomic status. ^
Resumo:
This study explored the health, education, social assets, needs, attitudes, and behaviors of residents of Ferrocarril #4, a small urban community in Tamaulipas, Mexico. A collaborative Participatory Action Research approach was used to emphasize community involvement. Using Triangulation to ensure validity, qualitative methods included key informant in depth interviews, participant observation and participatory discussion groups with women and men. A personal interview with a probability sample of women was done. The median age of interviewees was 37 years. The majority was married or had a partner. Over half of respondents completed grades 6-9. Employed women (25%) earned a median weekly salary equivalent to ∼56 USD. Women with health insurance (67.7%) were covered mainly through Social Security and Seguro Popular. One in 5 reported bad health. Barriers to care were primarily money and transportation. To improve health care, women wanted a full service clinic in or close to the community and affordable health care. Socially, 28% of respondents had no close friends in the community and most did not participate in beneficial community activities. Many women did not socialize with others and help from neighbors was situational. Primary school teachers lacked parental support and it interfered with classroom efforts. Healthy community discussion groups focused on personal and environmental hygiene and safety. Valuable assets exist in the community. To date, collaborative efforts resulted in a school First Aid station, a school nurse visit weekly, posting of emergency contact phone numbers in the school and community center, and development of a student health information form. ^
Resumo:
The purpose of this study was to assess the impact of the Arkansas Long-Term Care Demonstration Project upon Arkansas' Medicaid expenditures and upon the clients it serves. A Retrospective Medicaid expenditure study component used analyses of variance techniques to test for the Project's effects upon aggregated expenditures for 28 demonstration and control counties representing 25 percent of the State's population over four years, 1979-1982.^ A second approach to the study question utilized a 1982 prospective sample of 458 demonstration and control clients from the same 28 counties. The disability level or need for care of each patient was established a priori. The extent to which an individual's variation in Medicaid utilization and costs was explained by patient need, presence or absence of the channeling project's placement decision or some other patient characteristic was examined by multiple regression analysis. Long-term and acute care Medicaid, Medicare, third party, self-pay and the grand total of all Medicaid claims were analyzed for project effects and explanatory relationships.^ The main project effect was to increase personal care costs without reducing nursing home or acute care costs (Prospective Study). Expansion of clients appeared to occur in personal care (Prospective Study) and minimum care nursing home (Retrospective Study) for the project areas. Cost-shifting between Medicaid and Medicare in the project areas and two different patterns of utilization in the North and South projects tended to offset each other such that no differences in total costs between the project areas and demonstration areas occurred. The project was significant ((beta) = .22, p < .001) only for personal care costs. The explanatory power of this personal care regression model (R('2) = .36) was comparable to other reported health services utilization models. Other variables (Medicare buy-in, level of disability, Social Security Supplemental Income (SSI), net monthly income, North/South areas and age) explained more variation in the other twelve cost regression models. ^
Resumo:
Developing countries suffer from an array of diseases, of which the developed world is unfamiliar. In order to facilitate the development of community interventions and streamline NGO partnership, needs assessments in targeted areas are conducted. The purpose of this assessment was to attain baseline descriptive data to further understand the needs of the village of Robit, Ethiopia. A trained team collected data from Austin based non-profit Water to Thrive (W2T) on June 1st and 2nd, 2011 through focus groups, key informant interviews, and individual surveys. Qualitative and quantitative data were paired to affirm the results of one another through triangulation. The results identified an apparent need for health intervention and education. Malaria, water-borne disease, respiratory issues (asthma, Upper respiratory tract infections), and maternal and child health were among the evident problems in Robit. There was a clear need for midwife training as well as water sanitation, latrine building, and general illness treatment. Poor road conditions and annual flooding of Robit plays an important role in the poor health and lack of food security of the village. While some evidence of social desirability and recall bias was found in the interview and survey data, the triangulation of findings provided important insights and validity to the needs assessment. ^
Resumo:
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive technique for quantitative assessment of the integrity of blood-brain barrier and blood-spinal cord barrier (BSCB) in the presence of central nervous system pathologies. However, the results of DCE-MRI show substantial variability. The high variability can be caused by a number of factors including inaccurate T1 estimation, insufficient temporal resolution and poor contrast-to-noise ratio. My thesis work is to develop improved methods to reduce the variability of DCE-MRI results. To obtain fast and accurate T1 map, the Look-Locker acquisition technique was implemented with a novel and truly centric k-space segmentation scheme. In addition, an original multi-step curve fitting procedure was developed to increase the accuracy of T1 estimation. A view sharing acquisition method was implemented to increase temporal resolution, and a novel normalization method was introduced to reduce image artifacts. Finally, a new clustering algorithm was developed to reduce apparent noise in the DCE-MRI data. The performance of these proposed methods was verified by simulations and phantom studies. As part of this work, the proposed techniques were applied to an in vivo DCE-MRI study of experimental spinal cord injury (SCI). These methods have shown robust results and allow quantitative assessment of regions with very low vascular permeability. In conclusion, applications of the improved DCE-MRI acquisition and analysis methods developed in this thesis work can improve the accuracy of the DCE-MRI results.