10 resultados para Dynamic random access storage

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perceptual learning is a training induced improvement in performance. Mechanisms underlying the perceptual learning of depth discrimination in dynamic random dot stereograms were examined by assessing stereothresholds as a function of decorrelation. The inflection point of the decorrelation function was defined as the level of decorrelation corresponding to 1.4 times the threshold when decorrelation is 0%. In general, stereothresholds increased with increasing decorrelation. Following training, stereothresholds and standard errors of measurement decreased systematically for all tested decorrelation values. Post training decorrelation functions were reduced by a multiplicative constant (approximately 5), exhibiting changes in stereothresholds without changes in the inflection points. Disparity energy model simulations indicate that a post-training reduction in neuronal noise can sufficiently account for the perceptual learning effects. In two subjects, learning effects were retained over a period of six months, which may have application for training stereo deficient subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic resonance temperature imaging (MRTI) is recognized as a noninvasive means to provide temperature imaging for guidance in thermal therapies. The most common method of estimating temperature changes in the body using MR is by measuring the water proton resonant frequency (PRF) shift. Calculation of the complex phase difference (CPD) is the method of choice for measuring the PRF indirectly since it facilitates temperature mapping with high spatiotemporal resolution. Chemical shift imaging (CSI) techniques can provide the PRF directly with high sensitivity to temperature changes while minimizing artifacts commonly seen in CPD techniques. However, CSI techniques are currently limited by poor spatiotemporal resolution. This research intends to develop and validate a CSI-based MRTI technique with intentional spectral undersampling which allows relaxed parameters to improve spatiotemporal resolution. An algorithm based on autoregressive moving average (ARMA) modeling is developed and validated to help overcome limitations of Fourier-based analysis allowing highly accurate and precise PRF estimates. From the determined acquisition parameters and ARMA modeling, robust maps of temperature using the k-means algorithm are generated and validated in laser treatments in ex vivo tissue. The use of non-PRF based measurements provided by the technique is also investigated to aid in the validation of thermal damage predicted by an Arrhenius rate dose model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heart is a remarkable organ. In order to maintain its function, it remodels in response to a variety of environmental stresses, including pressure overload, volume overload, mechanical or pharmacological unloading and hormonal or metabolic disturbances. All these responses are linked to the inherent capacity of the heart to rebuild itself. Particularly, cardiac pressure overload activates signaling pathways of both protein synthesis and degradation. While much is known about regulators of protein synthesis, little is known about regulators of protein degradation in hypertrophy. The ubiquitin-proteasome system (UPS) selectively degrades unused and abnormal intracellular proteins. I speculated that the UPS may play an important role in both qualitative and quantitative changes in the composition of heart muscle during hypertrophic remodeling. My study hypothesized that cardiac remodeling in response to hypertrophic stimuli is a dynamic process that requires activation of highly regulated mechanisms of protein degradation as much as it requires protein synthesis. My first aim was to adopt a model of left ventricular hypertrophy and determine its gene expression and structural changes. Male Sprague-Dawley rats were submitted to ascending aortic banding and sacrificed at 7 and 14 days after surgery. Sham operated animals served as controls. Effective aortic banding was confirmed by hemodynamic assessment by Doppler flow measurements in vivo. Banded rats showed a four-fold increase in peak stenotic jet velocities. Histomorphometric analysis revealed a significant increase in myocyte size as well as fibrosis in the banded animals. Transcript analysis showed that banded animals had reverted to the fetal gene program. My second aim was to assess if the UPS is increased and transcriptionally regulated in hypertrophic left ventricular remodeling. Protein extracts from the left ventricles of the banded and control animals were used to perform an in vitro peptidase assay to assess the overall catalytic activity of the UPS. The results showed no difference between hypertrophied and control animals. Transcript analysis revealed decreases in transcript levels of candidate UPS genes in the hypertrophied hearts at 7 days post-banding but not at 14 days. However, protein expression analysis showed no difference at either time point compared to controls. These findings indicate that elements of the UPS are downregulated in the early phase of hypertrophic remodeling and normalizes in a later phase. The results provide evidence in support of a dynamic transcriptional regulation of a major pathway of intracellular protein degradation in the heart. The discrepancy between transcript levels on the one hand and protein levels on the other hand supports post-transcriptional regulation of the UPS pathway in the hypertrophied heart. The exact mechanisms and the functional consequences remain to be elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this culminating experience was to investigate the relationships between healthcare utilization, insurance coverage, and socioeconomic characteristics of children with asthma along the Texas-Mexico Border. A secondary data analysis was conducted on cross-sectional data from the Texas Child Asthma Call-back Survey, a follow-up survey to the random digit dialed Behavior Risk Factor Surveillance Study (BRFSS) conducted between 2006-2009 ( n = 556 adults living in households with a child with asthma).^ The proportion of Hispanic children with asthma in Border areas of Texas was more than twice that of non-Border areas (84.8% vs. 28.8%). Parents in Border areas were less likely to have their own health insurance (OR = 0.251, 95% C.I. = 0.117-0.540) and less likely to complete the survey in English than Spanish (OR = 0.251 95% C.I. = 0.117-0.540) than parents in non-Border areas. No significant socio-economic or health care utilization differences were noted between Hispanic children living in Border areas compared to Hispanic children living in non-Border areas. Children with asthma along the Texas-Mexico Border, regardless of ethnicity and language, have insurance coverage rates, reported cost barriers to care, symptom management, and medication usage patterns similar to those in non-Border areas. When compared to English-speakers, Spanish-speaking parents in Texas as a whole are far less likely to be taught what to do during an asthma attack (50.2% vs. 78.6%).^ Language preference, rather than ethnicity or geographical residence, played a larger role on childhood asthma-related health disparities for children in Texas. Spanish-speaking parents in are less likely to receive adequate asthma self-management education. Investigating the effects of Hispanic acculturation rates and incongruent parent-child health insurance coverage may provide better insight into the health disparities of children along the Texas-Mexico Border.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive technique for quantitative assessment of the integrity of blood-brain barrier and blood-spinal cord barrier (BSCB) in the presence of central nervous system pathologies. However, the results of DCE-MRI show substantial variability. The high variability can be caused by a number of factors including inaccurate T1 estimation, insufficient temporal resolution and poor contrast-to-noise ratio. My thesis work is to develop improved methods to reduce the variability of DCE-MRI results. To obtain fast and accurate T1 map, the Look-Locker acquisition technique was implemented with a novel and truly centric k-space segmentation scheme. In addition, an original multi-step curve fitting procedure was developed to increase the accuracy of T1 estimation. A view sharing acquisition method was implemented to increase temporal resolution, and a novel normalization method was introduced to reduce image artifacts. Finally, a new clustering algorithm was developed to reduce apparent noise in the DCE-MRI data. The performance of these proposed methods was verified by simulations and phantom studies. As part of this work, the proposed techniques were applied to an in vivo DCE-MRI study of experimental spinal cord injury (SCI). These methods have shown robust results and allow quantitative assessment of regions with very low vascular permeability. In conclusion, applications of the improved DCE-MRI acquisition and analysis methods developed in this thesis work can improve the accuracy of the DCE-MRI results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY by James Leroy Neihart, B.S. APPROVED: ______________________________David Followill, Ph.D. ______________________________Peter Balter, Ph.D. ______________________________Narayan Sahoo, Ph.D. ______________________________Kenneth Hess, Ph.D. ______________________________Paige Summers, M.S. APPROVED: ____________________________ Dean, The University of Texas Graduate School of Biomedical Sciences at Houston DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY A THESIS Presented to the Faculty of The University of Texas Health Science Center at Houston andThe University of TexasMD Anderson Cancer CenterGraduate School of Biomedical Sciences in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE by James Leroy Neihart, B.S. Houston, Texas Date of Graduation August, 2013 Acknowledgments I would like to acknowledge my advisory committee members, chair David Followill, Ph.D., Peter Balter, Ph.D, Narayan Sahoo, Ph.D., Kenneth Hess, Ph.D., Paige Summers M.S. and, for their time and effort contributed to this project. I would additionally like to thank the faculty and staff at the PTC-H and the RPC who assisted in many aspects of this project. Falk Pӧnisch, Ph.D. for his breath hold proton therapy treatment expertise, Matt Palmer and Jaques Bluett for proton dosimetry assistance, Matt Kerr for verification plan assistance, Carrie Amador, Nadia Hernandez, Trang Nguyen, Andrea Molineu, Lynda McDonald for TLD and film dosimetry assistance. Finally, I would like to thank my wife and family for their support and encouragement during my research and studies. Development and implementation of a dynamic heterogeneous proton equivalent anthropomorphic thorax phantom for the assessment of scanned proton beam therapy By: James Leroy Neihart, B.S. Chair of Advisory Committee: David Followill, Ph.D Proton therapy has been gaining ground recently in radiation oncology. To date, the most successful utilization of proton therapy is in head and neck cases as well as prostate cases. These tumor locations do not suffer from the resulting difficulties of treatment delivery as a result of respiratory motion. Lung tumors require either breath hold or motion tracking, neither of which have been assessed with an end-to-end phantom for proton treatments. Currently, the RPC does not have a dynamic thoracic phantom for proton therapy procedure assessment. Additionally, such a phantom could be an excellent means of assessing quality assurance of the procedures of proton therapy centers wishing to participate in clinical trials. An eventual goal of this phantom is to have a means of evaluating and auditing institutions for the ability to start clinical trials utilizing proton therapy procedures for lung cancers. Therefore, the hypothesis of this study is that a dynamic anthropomorphic thoracic phantom can be created to evaluate end-to-end proton therapy treatment procedures for lung cancer to assure agreement between the measured and calculated dose within 5% / 5 mm with a reproducibility of 2%. Multiple materials were assessed for thoracic heterogeneity equivalency. The phantom was designed from the materials found to be in greatest agreement. The phantom was treated in an end-to-end treatment four times, which included simulation, treatment planning and treatment delivery. Each treatment plan was delivered three times to assess reproducibility. The dose measured within the phantom was compared to that of the treatment plan. The hypothesis was fully supported for three of the treatment plans, but failed the reproducibility requirement for the most aggressive treatment plan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My dissertation focuses on two aspects of RNA sequencing technology. The first is the methodology for modeling the overdispersion inherent in RNA-seq data for differential expression analysis. This aspect is addressed in three sections. The second aspect is the application of RNA-seq data to identify the CpG island methylator phenotype (CIMP) by integrating datasets of mRNA expression level and DNA methylation status. Section 1: The cost of DNA sequencing has reduced dramatically in the past decade. Consequently, genomic research increasingly depends on sequencing technology. However it remains elusive how the sequencing capacity influences the accuracy of mRNA expression measurement. We observe that accuracy improves along with the increasing sequencing depth. To model the overdispersion, we use the beta-binomial distribution with a new parameter indicating the dependency between overdispersion and sequencing depth. Our modified beta-binomial model performs better than the binomial or the pure beta-binomial model with a lower false discovery rate. Section 2: Although a number of methods have been proposed in order to accurately analyze differential RNA expression on the gene level, modeling on the base pair level is required. Here, we find that the overdispersion rate decreases as the sequencing depth increases on the base pair level. Also, we propose four models and compare them with each other. As expected, our beta binomial model with a dynamic overdispersion rate is shown to be superior. Section 3: We investigate biases in RNA-seq by exploring the measurement of the external control, spike-in RNA. This study is based on two datasets with spike-in controls obtained from a recent study. We observe an undiscovered bias in the measurement of the spike-in transcripts that arises from the influence of the sample transcripts in RNA-seq. Also, we find that this influence is related to the local sequence of the random hexamer that is used in priming. We suggest a model of the inequality between samples and to correct this type of bias. Section 4: The expression of a gene can be turned off when its promoter is highly methylated. Several studies have reported that a clear threshold effect exists in gene silencing that is mediated by DNA methylation. It is reasonable to assume the thresholds are specific for each gene. It is also intriguing to investigate genes that are largely controlled by DNA methylation. These genes are called “L-shaped” genes. We develop a method to determine the DNA methylation threshold and identify a new CIMP of BRCA. In conclusion, we provide a detailed understanding of the relationship between the overdispersion rate and sequencing depth. And we reveal a new bias in RNA-seq and provide a detailed understanding of the relationship between this new bias and the local sequence. Also we develop a powerful method to dichotomize methylation status and consequently we identify a new CIMP of breast cancer with a distinct classification of molecular characteristics and clinical features.