4 resultados para Drug problem
em DigitalCommons@The Texas Medical Center
Resumo:
Resistance of tumors to pharmacologic agents poses a significant problem in the treatment of human malignancies. This study overviews the scope of clinical resistance and focuses upon current research attempts toward investigation of the phenomenon of multidrug resistance (MDR).^ The objective of this investigation was to determine whether gene amplification had a role in the development of the MDR phenotype in Chinese hamster ovary cells (CHO) primarily selected for resistance to vincristine (VCR). A DNA fragment, previously shown to be amplified in two independently derived Chinese hamster cell lines exhibiting the MDR phenotype, was also amplified in VCR hamster lines. Sequences flanking this fragment were shown to contain coding information for a 4.3 kb transcript overproduced in VCR cells. These sequences were not enriched in double minute DNA preparations isolated from VCR cells. There was an approximately forty-fold increase in both the level of gene amplification and transcript overproduction in the VCR cell lines, independent of the level of primary resistance. This DNA amplification and overproduction of the 4.3 kb transcript was also demonstrated in CHO cells independently selected for resistance to Adriamycin and vinblastine.^ All the DNA sequences of two hamster cDNA clones containing 785 and 932 base pair inserts showed direct homology to the published mouse mdr sequences (about 90%). This sequence conservation held for only portions of the gene when the human mdr1 sequences were compared with those from either the mouse or hamster.^ Somatic cell hybrids, constructed between VCR CHO cells and sensitive murine cells, were used to determine whether there was a functional relationship between the chromosome bearing the amplified sequences and the MDR phenotype. Concordant segregation between vincristine resistance, the MDR phenotype, the presence of MDR-associated amplified sequences, overexpression of the mRNA encoded by these sequences, overexpression of the mRNA encoded by these sequences, and CHO chromosome Z1 was consistent with the hypothesis that there is an amplified gene on chromosome Z1 of the VCR CHO cells which is responsible for MDR in these cells. ^
Resumo:
Severe liver injury (SLI) due to drugs is a frequent cause of catastrophic illness and hospitalization. Due to significant morbidity, mortality, and excess medical care costs, this poses a challenge as a public health problem. The role of associated risk factors like alcohol consumption in contributing to the high mortality remains to be studied. This study was conducted to assess the impact of alcohol use on mortality in IDILI patients, while adjusting for age, gender, race/ethnicity, and education level. The data from this study indicate only a small excess risk of death among IDILI patients using alcohol, but the difference was not statistically significant. The major contribution of this study to the field of public health is that it excludes a large hazard of alcohol consumption on the mortality among idiosyncratic drug induced liver injury (IDILI) patients. ^
Resumo:
The mechanisms responsible for anti-cancer drug (including Taxol) treatment failure have not been identified. In cell culture model systems, many β-tubulin, but very few α-tubulin, mutations have been associated with resistance to Taxol. To test what, if any, mutations in α-tubulin can cause resistance, we transfected a randomly mutagenized α-tubulin cDNA into Chinese hamster ovary (CHO) cells and isolated drug resistant cell lines. A total of 12 mutations were identified in this way and all of them were confirmed to confer Taxol resistance. Furthermore, all cells expressing mutant α-tubulin had less microtubule polymer. Some cells also had abnormal nuclei and enlarged cell bodies. The data indicate that α-tubulin mutations confer Taxol resistance by disrupting microtubule assembly, a mechanism consistent with a large number of previously described β-tubulin mutations. ^ Because α- and β-tubulin are almost identical in their three dimensional structure, we hypothesized that mutations discovered in one subunit, when introduced into the other, would produce similar effects on microtubule assembly and drug resistance. 9 α- and 2 β-tubulin mutations were tested. The results were complex. Some mutations produced similar changes in microtubule assembly and drug resistance irrespective of the subunit in which they were introduced, but others produced opposite effects. Still one mutation produced resistance when present in one subunit, yet had no effect when present on the other; and one mutation that produced Taxol resistance when present in α-tubulin, resulted in assembly-defective tubulin when it was present in β-tubulin. The results suggest that in most cases, the same amino acid modification in α- and β-tubulin affects the microtubule structure and assembly in a similar way. ^ Finally, we tested whether three β-tubulin mutations found in patient tumors could confer resistance to Taxol by recreating the mutations in a β-tubulin cDNA and transfecting it into CHO cells. We found that all three mutations conferred Taxol resistance, but to different extents. Again, microtubule assembly in the transfectants was disrupted, suggesting that mutations in β-tubulin are a potential problem in cancer therapeutics. ^
Resumo:
Foodborne illness has always been with us, and food safety is an increasingly important public health issue affecting populations worldwide. In the United States of America, foodborne illness strikes millions of people and kills thousands annually, costing our economy billions of dollars in medical care expense and lost productivity. The nature of food and foodborne illness has changed dramatically in the last century. The regulatory systems have evolved to better assure a safe food supply. The food production industry has invested heavily to meet regulatory requirement and to improve the safety of their products. Educational efforts have increased public awareness of safe food handling practices, empowering consumers to fulfill their food safety role. Despite the advances made, none of the Healthy People 2010 targets for reduction of foodborne pathogens has been reached. There is no single solution to eliminating pathogen contamination from all classes of food products. However, irradiation seems especially suited for certain higher-risk foods such as meat and poultry and its use should advance the goal of reducing foodborne illness by minimizing the presence of pathogenic organisms in the food supply. This technology has been studied extensively for over 50 years. The Food and Drug Administration has determined that food irradiation is safe for use as approved by the Agency. It is time to take action to educate consumers about the benefits of food irradiation. Consumer demand will compel industry to meet demand by investing in facilities and processes to assure a consistent supply of irradiated food products. ^