9 resultados para Drinking-water quality
em DigitalCommons@The Texas Medical Center
Resumo:
Drinking water-related exposures within populations living in the United States-Mexico border region, particularly among Hispanics, is an area that is largely unknown. Specifically, perceptions that may affect water source selection is an issue that has not been fully addressed. This study evaluates drinking water quality perceptions in a mostly Hispanic community living along the United States-Mexico border, a community also facing water scarcity issues. Using a survey that was administered during two seasons (winter and summer), data were collected from a total of 608 participants, of which 303 were living in the United States and 305 in Mexico. A (random) convenience sampling technique was used to select households and those interviewed were over 18 years of age. Statistically significant differences were observed involving country of residence (p=0.002). Specifically, those living in Mexico reported a higher use of bottled water than those living in the United States. Perception factors, especially taste, were cited as main reasons for not selecting unfiltered tap water as a primary drinking water source. Understanding what influences drinking water source preference can aid in the development of risk communication strategies regarding water quality. ^
Resumo:
Introduction. Lake Houston serves as a reservoir for both recreational and drinking water for residents of Houston, Texas, and the metropolitan area. The Texas Commission on Environmental Quality (TCEQ) expressed concerns about the water quality and increasing amounts of pathogenic bacteria in Lake Houston (3). The objective of this investigation is to evaluate water quality for the presence of bacteria, nitrates, nitrites, carbon, phosphorus, dissolved oxygen, pH, turbidity, suspended solids, dissolved solids, and chlorine in Cypress Creek. The aims of this project are to analyze samples of water from Cypress Creek and to render a quantitative and graphical representation of the results. The collected information will allow for a better understanding of the aqueous environment in Cypress Creek.^ Methods. Water samples were collected in August 2009 and analyzed in the field and at UTSPH laboratory by spectrophotometry and other methods. Mapping software was utilized to develop novel maps of the sample sites using coordinates attained with the Global Positioning System (GPS). Sample sites and concentrations were mapped using Geographic Information System (GIS) software and correlated with permitted outfalls and other land use characteristic.^ Results. All areas sampled were positive for the presence of total coliform and Escherichia coli (E. coli). The presences of other water contaminants varied at each location in Cypress Creek but were under the maximum allowable limits designated by the Texas Commission on Environmental Quality. However, dissolved oxygen concentrations were elevated above the TCEQ limit of 5.0 mg/L at majority of the sites. One site had near-limit concentration of nitrates at 9.8 mg/L. Land use above this site included farm land, agricultural land, golf course, parks, residential neighborhoods, and nine permitted TCEQ effluent discharge sites within 0.5 miles upstream.^ Significance. Lake Houston and its tributary, Cypress Creek, are used as recreational waters where individuals may become exposed to microbial contamination. Lake Houston also is the source of drinking water for much of Houston/Harris and Galveston Counties. This research identified the presence of microbial contaminates in Cypress Creek above TCEQ regulatory requirements. Other water quality variables measured were in line with TCEQ regulations except for near-limit for nitrate at sample site #10, at Jarvis and Timberlake in Cypress Texas.^
Resumo:
A cross-sectional study on the use of three pesticides and their presence in drinking water sources was conducted in Githunguri/Kiaria community between January 1994-March 1995. The main objective of the study was to determine the extent to which some of the pesticides used by the Githunguri/Kiaria agricultural community were polluting their drinking water sources. Due to monetary and physical limitations, only DDT, its isomers and metabolites, carbofuran and carbaryl pesticides were identified and used as surrogates of pollution for the other pesticides.^ The study area was divided into high and low lying geographic surface areas. Thirty-four and 38 water sampling sites were randomly selected respectively. During wet and dry seasons, a total of 144 water samples were collected and analyzed at the Kenya Bureau of Standards Laboratory in Nairobi. Gas chromatography was used to analyze samples for possible presence of DDT, its isomers and metabolites, while high pressure liquid chromatography was used to analyze samples for carbofuran and carbaryl pesticides.^ Six sites testing positively for DDT, its isomers and metabolites represented 19.4% of the total sampled sites, with a mean concentration of 0.00310 ppb in the dry season and 0.0130 ppb in the wet season. All the six sites testing positively for the same pesticide exceeded the European maximum contaminant limit (MCL) in the wet season, and only one site exceeded the European MCL in the dry season.^ Those sites testing positively for carbofuran and carbaryl represented 5.6% of the total sampled sites. The mean concentration for the carbofuran at the sites was 2.500 ppb and 1.590 ppb in the dry and wet seasons respectively. Similarly, the mean concentration for carbaryl at the sites was 0.281 ppb in the dry season and 0.326 ppb in the wet season.^ One site testing positively for carbofuran exceeded the European MCL and WHO set limit in the wet season, while one site testing positively for the same pesticide exceeded the USA, Canada, European and WHO MCLs in the dry season. Similarly, one site which tested positively for carbaryl pesticide exceeded the European MCL in both seasons.^ Out of the 2,587 community members in the study area, 333 (13%) were exposed through their drinking water sources to the three pesticides investigated by this study. As a public health measure, integrated pest management approaches (IPM), protection of the wells and education of the community is necessary to minimize the pollution of the environment and safeguard the drinking water sources from pollution by the pesticides. ^
Resumo:
A new technique for the detection of microbiological fecal pollution in drinking and in raw surface water has been modified and tested against the standard multiple-tube fermentation technique (most-probable-number, MPN). The performance of the new test in detecting fecal pollution in drinking water has been tested at different incubation temperatures. The basis for the new test was the detection of hydrogen sulfide produced by the hydrogen sulfide producing bacteria which are usually associated with the coliform group. The positive results are indicated by the appearance of a brown to black color in the contents of the fermentation tube within 18 to 24 hours of incubation at 35 (+OR-) .5(DEGREES)C. For this study 158 water samples of different sources have been used. The results were analyzed statistically with the paired t-test and the one-way analysis of variance. No statistically significant difference was noticed between the two methods, when tested 35 (+OR-) .5(DEGREES)C, in detecting fecal pollution in drinking water. The new test showed more positive results with raw surface water, which could be due to the presence of hydrogen sulfide producing bacteria of non-fecal origin like Desulfovibrio and Desulfomaculum. The survival of the hydrogen sulfide producing bacteria and the coliforms was also tested over a 7-day period, and the results showed no significant difference. The two methods showed no significant difference when used to detect fecal pollution at a very low coliform density. The results showed that the new test is mostly effective, in detecting fecal pollution in drinking water, when used at 35 (+OR-) .5(DEGREES)C. The new test is effective, simple, and less expensive when used to detect fecal pollution in drinking water and raw surface water at 35 (+OR-) .5(DEGREES)C. The method can be used for qualitative and/or quantitative analysis of water in the field and in the laboratory. ^
Resumo:
Maternal ingestion of high concentrations of radon-222 (Rn-222) in drinking during pregnancy may pose a significant radiation hazard to the developing embryo. The effects of ionizing radiation to the embryo and fetus have been the subject of research, analyses, and the development of a number of radiation dosimetric models for a variety of radionuclides. Currently, essentially all of the biokinetic and dosimetric models that have been developed by national and international radiation protection agencies and organizations recommend calculating the dose to the mother's uterus as a surrogate for estimating the dose to the embryo. Heretofore, the traditional radiation dosimetry models have neither considered the embryo a distinct and rapidly developing entity, the fact that it is implanted in the endometrial layer of the uterus, nor the physiological interchanges that take place between maternal and embryonic cells following the implantation of the blastocyst in the endometrium. The purpose of this research was to propose a new approach and mathematical model for calculating the absorbed radiation dose to the embryo by utilizing a semiclassical treatment of alpha particle decay and subsequent scattering of energy deposition in uterine and embryonic tissue. The new approach and model were compared and contrasted with the currently recommended biokinetic and dosimetric models for estimating the radiation dose to the embryo. The results obtained in this research demonstrate that the estimated absorbed dose for an embryo implanted in the endometrial layer of the uterus during the fifth week of embryonic development is greater than the estimated absorbed dose for an embryo implanted in the uterine muscle on the last day of the eighth week of gestation. This research provides compelling evidence that the recommended methodologies and dosimetric models of the Nuclear Regulatory Commission and International Commission on Radiological Protection employed for calculating the radiation dose to the embryo from maternal intakes of radionuclides, including maternal ingestion of Rn-222 in drinking water would result in an underestimation of dose. ^
Resumo:
Background. Houston, Texas, once obtained all its drinking water from underground sources. However, in 1853, the city began supplementing its water from the surface source Lake Houston. This created differences in the exposure to disinfection byproducts (DBPs) in different parts of Houston. Trihalomethanes (THMs) are the most common DBP and are useful indicators of DBPs in treated drinking water. This study examines the relationship between THMs in chlorinated drinking water and the incidence of bladder cancer in Houston. ^ Methods. Individual bladder cancer deaths, from 1975 to 2004, were assigned to four surface water exposure areas in Houston utilizing census tracts—area A used groundwater the longest, area B used treated lake water the longest, area C used treated lake water the second longest, and area D used a combination of groundwater and treated lake water. Within each surface water exposure area mortality rates were calculated in 5 year intervals by four race-gender categories. Linear regression models were fitted to the bladder cancer mortality rates over the entire period of available data (1990–2004). ^ Results. A decrease in bladder cancer mortality was observed amongst white males in area B (p = 0.030), white females in area A (p = 0.008), non-white males in area D (p = 0.003), and non-white females in areas A and B (p = 0.002 & 0.001). Bladder cancer mortality differed by race-gender and time (p ≤ 0.001 & p ≤ 0.001), but not by surface water exposure area (p = 0.876). ^ Conclusion. The relationship between bladder cancer mortality and the four surface water exposure areas (signifying THM exposure) was insignificant. This result could be attributable to Houston controlling for THMs starting in the early 1980’s by using chloramine as a secondary disinfectant in the drinking water purification process.^
Resumo:
The geographic distribution of average annual age-adjusted mortality rates (1964-1976) for four types of cancer (all cancer sites combined, gastrointestinal, urinary, and lung cancer) were compared by sources of drinking water for 254 Texas counties and county rural areas and 301 Texas cities. Exposure variables considered were surface versus ground water, public water supplies versus individuals wells, and trihalomethane levels in municipal water supplies. Each general source of "surface" and "ground" water was further divided by aggregating ground water using areas by aquifers and surface water using study areas by river basins. Potential confounding variables taken into account included median education, employment in cancer risk industries, population mobility, ethnicity, and urbanicity. A pattern of higher and lower cancer mortality rates was found for populations using some aquifers and river basins. Further study is required to determine whether the differences in cancer mortality rates that were observed are related to drinking water content or are coincidental with differences in personal characteristics which could not be taken into account in this ecologic study design. ^
Resumo:
Background. The Cypress Creek is one of the main tributaries of Lake Houston, which provides drinking water to 21.4 million customers. Furthermore, the watershed is being utilized for contact and non-contact recreation, such as canoeing, swimming, hiking trail, and picnics. Water along the creek is impacted by numerous wastewater outfalls from both point and non-point sources. As the creek flows into Lake Houston, it carries both organic and inorganic contaminants that may affect the drinking water quality of this important water source reservoir. Objective. This study was carried out to evaluate the inorganic chemical load of the water in Cypress Creek along its entire length, from the headwaters in Waller County and up to the drainage into Lake Houston. The purpose was to determine whether there are hazardous concentrations of metals in the water and what would be the likely sources. Method. Samples were collected at 29 sites along the creek and analyzed for 29 metals, 17 of which were on the Environmental Protection Agency priority pollution list. Public access sites primarily at bridges were used for sample collection. Samples were transported on ice to the University Of Texas School Of Public Health laboratory, spiked with 2 ml HNO3 kept overnight in the refrigerator, and the following day transported to the EPA laboratory for analysis. Analysis was done by EPA Method 200.7-ICP, Method 200.8ICP/MS and Method 245.1-CVAAS. Results. Metals were present above the detection limits at 65% of sites. Concentrations of aluminum, iron, sodium, potassium, magnesium, and calcium, were particularly high at all sites. Aluminum, sodium, and iron concentrations greatly exceeded the EPA secondary drinking water standards at all sites. ^ Conclusion. The recreational water along Cypress Creek is impacted by wastewater from both permitted and non-permitted outfalls, which deposit inorganic substances into the water. Although a number of inorganic contaminants were present in the water, toxic metals regulated by the EPA were mostly below the recommended limits. However, high concentrations of aluminum, sodium, and iron in the Cypress Creek bring forward the issue of unauthorized discharges of salt water from mining, as well as industrial and domestic wastewater.^
Resumo:
Background. Diarrhea and malnutrition are the leading causes of mortality for children age one to four in the Dominican Republic. Communities within the Miches watershed lack sanitation infrastructure and water purification systems, which increases the risk of exposure to water-borne pathogens. The purpose of this cross-sectional study was to analyze health information gathered through household interviews and to test water samples for the presence of diarrheagenic pathogens and antibiotic-resistant bacteria within the Miches watershed. Methods. Frequency counts and thematic analysis were used to investigate Human Health Survey responses and Fisher's exact test was used to determine correlation between water source and reported illness. Bacteria cultured from water samples were analyzed by Gram stain, real-time PCR, API® 20E biochemical identification, and for antibiotic resistance. Results. Community members reported concerns about water sources with respect to water quality, availability, and environmental contamination. Pathogenic strains of E. coli were present in the water samples. Drinking aquifer water was positively-correlated with reported stomach aches (p=0.04) while drinking from rivers or creeks was associated with the reported absence of “gripe” (cold or flu) (p=0.01). The lack of association between reported illnesses and water source for the majority of variables suggested that there were multiple vehicles of disease transmission. Antibiotic resistant bacteria were isolated from the water samples tested. Conclusions. The presence of pathogenic E. coli in water samples suggested that water is at least one route of transmission for diarrheagenic pathogens in the Miches watershed. The presence of antibiotic-resistant bacteria in the water samples may indicate the proliferation of resistance plasmids in the environment as a result of antibiotic overuse in human and animal populations and a lack of sanitation infrastructure. An intervention that targets areas of hygiene, sanitation, and water purification is recommended to limit human exposure to diarrheagenic pathogens and antibiotic-resistant organisms. ^