9 resultados para Dopamine transporter

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uptake through the dopamine transporter (DAT) represents the primary mechanism used to terminate dopaminergic transmission in brain. Although it is well known that dopamine (DA) taken up by the transporter is used to replenish synaptic vesicle stores for subsequent release, the molecular details of this mechanism are not completely understood. Here, we identified the synaptic vesicle protein synaptogyrin-3 as a DAT interacting protein using the split ubiquitin system. This interaction was confirmed through coimmunoprecipitation experiments using heterologous cell lines and mouse brain. DAT and synaptogyrin-3 colocalized at presynaptic terminals from mouse striatum. Using fluorescence resonance energy transfer microscopy, we show that both proteins interact in live neurons. Pull-down assays with GST (glutathione S-transferase) proteins revealed that the cytoplasmic N termini of both DAT and synaptogyrin-3 are sufficient for this interaction. Furthermore, the N terminus of DAT is capable of binding purified synaptic vesicles from brain tissue. Functional assays revealed that synaptogyrin-3 expression correlated with DAT activity in PC12 and MN9D cells, but not in the non-neuronal HEK-293 cells. These changes were not attributed to changes in transporter cell surface levels or to direct effect of the protein-protein interaction. Instead, the synaptogyrin-3 effect on DAT activity was abolished in the presence of the vesicular monoamine transporter-2 (VMAT2) inhibitor reserpine, suggesting a dependence on the vesicular DA storage system. Finally, we provide evidence for a biochemical complex involving DAT, synaptogyrin-3, and VMAT2. Collectively, our data identify a novel interaction between DAT and synaptogyrin-3 and suggest a physical and functional link between DAT and the vesicular DA system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Outcome following traumatic brain injury (TBI) is in large part determined by the combined action of multiple processes. In order to better understand the response of the central nervous system to injury, we utilized an antibody array to simultaneously screen 507 proteins for altered expression in the injured hippocampus, a structure critical for memory formation. Array analysis indicated 41 candidate proteins have altered expression levels 24h after TBI. Of particular interest was catechol-O-methyl transferase (COMT), an enzyme involved in metabolizing catecholamines released following neuronal activity. Altered catecholamine signaling has been observed after brain injury, and may contribute to the cognitive dysfunctions and behavioral deficits often experienced after TBI. Our data shows that COMT expression in the injured ipsilateral hippocampus was elevated for at least 14 d after controlled cortical impact injury. We found strong co-localization of COMT immunoreactivity with the microglia marker Iba1 near the injury site. Since dopamine transporter expression has been reported to be down-regulated after brain injury, COMT-mediated catecholamine metabolism may play a more prominent role in terminating catecholamine signaling in injured areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulation of glutamate transporters accompanies plasticity of some glutamatergic synapses. The regulation of glutamate uptake at the Aplysia sensorimotor synapse during long-term facilitation (LTF) was investigated. Previously, increases in levels of ApGT1 (Aplysia glutamate transporter 1) in synaptic membranes were found to be related to long-term increases in glutamate uptake. In this study, we found that regulation of ApGT1 during LTF appears to occur post-translationally. Serotonin (5-HT) a transmitter that induces LTF did not increase synthesis of ApGT1. A pool of ApGT1 appears to exist in sensory neuron somata, which is transported to the terminals by axonal transport. Blocking the rough endoplasmic reticulum-Golgi-trans-Golgi network (TGN) pathway with Brefeldin A prevented the 5-HT-induced increase of ApGT1 in terminals. Also, 5-HT produced changes in post-translational modifications of ApGT1 as well as changes in the levels of an ApGT1-co-precipitating protein. These results suggest that regulation of trafficking of ApGT1 from the vesicular trafficking system (rough endoplasmic reticulum-Golgi-TGN) in the sensory neuron somata to the terminals by post-translational modifications and protein interactions appears to be the mechanism underlying the increase in ApGT1, and thus, glutamate uptake during memory formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Behavioral sensitization is defined as the subsequent augmentation of the locomotor response to a drug following repeated administrations of the drug. It is believed to occur due to alterations in the motive circuit in the brain by stressors, central nervous system stimulants, and similar stimuli. The motive circuit (or mesocorticolimbic system) consists of several interconnected nuclei that determine the behavioral response to significant biological stimuli. A final target of the mesocorticolimbic system is the nucleus accumbens (NAc), which is a key structure linking motivation and action. In particular, the dopaminergic innervations of the Nac are considered to be essential in regulating motivated states of behavior such as goal-directed actions, stimulus-reward associations and reinforcement by addictive substances. Therefore, the objective of this study was to investigate the role of dopaminergic afferents of the NAc in the behavioral sensitization elicited by chronic treatment with methylphenidate (MPD), a psychostimulant that is widely used to treat attention deficit hyperactivity disorder. The dopaminergic afferents can be selectively destroyed using catecholamine neurotoxin 6-hydroxydopamine (6-OHDA). In order to determine whether destruction of dopaminergic afferents of the NAc prevents sensitization, I compared locomotor activity in rats that had received infusions of 6-hydroxydopamine (6-OHDA) into the NAc with that of control and sham-operated animals. All groups of rats received six days of single daily MPD injections after measuring their pre and post surgery locomotor baseline. Following the consecutive MPD injections, there was a washout period of 4 days, where no injections were given. Then, a rechallenge injection of MPD was given. Behavioral responses after repeated MPD were compared to those after acute MPD to assess behavioral sensitization. Expression of sensitization to MPD was not prevented by 6-OHDA infusion into the NAc. Moreover, two distinct responses were seen to the acute injection of MPD: one group of rats had essentially no response to acute MPD, while the other had an augmented (‘sensitized’-like) acute response. Among rats with 6-OHDA infusions, the animals with diminished acute response to MPD had intact behavioral sensitization to repeated MPD, while the animals with increased acute response to MPD did not exhibit further sensitization to it. This suggests that the acute and chronic effects of MPD have distinct underlying neural circuitries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common malignancy among women in the world. Its 5-year survival rate ranges from 23.4% in patients with stage IV to 98% in stage I disease, highlighting the importance of early detection and diagnosis. 18F-2-Fluoro-2-deoxy-glucose (18F-FDG), using positron emission tomography (PET), is the most common functional imaging tool for breast cancer diagnosis currently. Unfortunately, 18F-FDG-PET has several limitations such as poorly differentiating tumor tissues from inflammatory and normal brain tissues. Therefore, 18F-labeled amino acid-based radiotracers have been reported as an alternative, which is based on the fact that tumor cells uptake and consume more amino acids to sustain their uncontrolled growth. Among those radiotracers, 18F-labeled tyrosine and its derivatives have shown high tumor uptake and great ability to differentiate tumor tissue from inflammatory sites in brain tumors and squamous cell carcinoma. They enter the tumor cells via L-type amino acid transporters (LAT), which were reported to be highly expressed in many cancer cell lines and correlate positively with tumor growth. Nevertheless, the low radiosynthesis yield and demand of an on-site cyclotron limit the use of 18F-labeled tyrosine analogues. In this study, four Technetium-99m (99mTc) labeled tyrosine/ AMT (α-methyl tyrosine)-based radiotracers were successfully synthesized and evaluated for their potentials in breast cancer imaging. In order to radiolabel tyrosine and AMT, the chelators N,N’-ethylene-di-L-cysteine (EC) and 1,4,8,11-tetra-azacyclotetradecane (N4 cyclam) were selected to coordinate 99mTc. These chelators have been reported to provide stable chelation ability with 99mTc. By using the chelator technology, the same target ligand could be labeled with different radioisotopes for various imaging modalities for tumor diagnosis, or for internal radionuclide therapy in future. Based on the in vitro and in vivo evaluation using the rat mammary tumor models, 99mTc-EC-AMT is considered as the most suitable radiotracer for breast cancer imaging overall, however, 99mTc-EC-Tyrosine will be more preferred for differential diagnosis of tumor from inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retinal circuitry underlying the release of dopamine was examined in the turtle, Pseudemys scripta elegans, using neurochemical release studies, anatomical techniques, and biochemistry. There was a dose- and calcium-dependent release of dopamine from turtle retinas incubated in $\sp3$H-dopamine after perfusion of the GABA antagonist bicuculline. This indicated that dopamine release was tonically inhibited by GABA. Other putative retinal transmitters were examined. Glutamate antagonists selective for hyperpolarizing bipolar cells, such as 2,3-piperidine dicarboxylic acid (PDA), caused dose- and calcium-dependent release of dopamine from the retina. In contrast, release was not observed after perfusion with 4-aminophosphonobutyric acid, a specific antagonist of depolarizing bipolar cells. This indicated that depolarizing bipolar cells were not involved in retinal circuitry underlying the release of dopamine in the turtle retina. The release produced by PDA was blocked by bicuculline, indicating a polysynaptic mechanism of release. None of the other agents tested, which included carbachol, strychnine, dopamine uptake inhibitors, serotonin, tryptamine, muscimol, melatonin, or dopamine itself produced release.^ The cells capable of the release of dopamine were identified using both uptake autoradiography and immunocytochemical localization with dopamine antisera. The simplest circuitry based on these findings is signal transmission from photoreceptors to hyperpolarizing bipolar cells then to GABAergic cells, and finally to dopaminergic amacrine cells. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Levodopa, the precursor of dopamine, is currently the drug of choice in the treatment of Parkinson's disease. Recently, two direct dopamine agonists, bromocriptine and pergolide, have been tested for the treatment of Parkinson's disease because of reduced side effects compared to levodopa. Few studies have evaluated the effects of long-term treatment of dopamine agonists on dopamine receptor regulation in the central nervous system. Thus, the purpose of this study was to determine whether chronic dopamine agonist treatment produces a down-regulation of striatal dopamine receptor function and to compare the results of the two classes of dopaminergic drugs.^ Levodopa with carbidopa, a peripheral decarboxylase inhibitor, was administered orally to rats whereas bromocriptine and pergolide were injected intraperitoneally once daily. Several neurochemical parameters were examined from 1 to 28 days.^ Levodopa minimally decreased striatal D-1 receptor activity but increased the number of striatal D-2 binding sites. Levodopa increased the V(,max) of tyrosine hydroxylase (TH) in all brain regions tested. Protein blot analysis of striatal TH indicated a significant increase in the amount of TH present. Dopamine-beta-hydroxylase (DBH) activity was markedly decreased in all brain regions studied and mixing experiments of control and drug-treated cortices did not show the presence of an increased level of endogenous inhibitors.^ Bromocriptine treatment decreased the number of D-2 binding sites. Striatal TH activity was decreased and protein blot analysis indicated no change in TH quantity. The specificity of bromocriptine for striatal TH suggested that bromocriptine preferentially interacts with dopamine autoreceptors.^ Combination levodopa-bromocriptine was administered for 12 days. There was a decrease in both D-1 receptor activity and D-2 binding sites, and a decrease in brain HVA levels suggesting a postsynaptic receptor action. Pergolide produced identical results to the combination levodopa-bromocriptine studies.^ In conclusion, combination levodopa-bromocriptine and pergolide treatments exhibited the expected down-regulation of dopamine receptor activity. In contrast, levodopa appeared to up-regulate dopamine receptor activity. Thus, these data may help to explain, on a biochemical basis, the decrease in the levodopa-induced side effects noted with combination levodopa-bromocriptine or pergolide therapies in the treatment of Parkinson's disease. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to design, synthesize and develop novel transporter targeting agents for image-guided therapy and drug delivery. Two novel agents, N4-guanine (N4amG) and glycopeptide (GP) were synthesized for tumor cell proliferation assessment and cancer theranostic platform, respectively. N4amG and GP were synthesized and radiolabeled with 99mTc and 68Ga. The chemical and radiochemical purities as well as radiochemical stabilities of radiolabeled N4amG and GP were tested. In vitro stability assessment showed both 99mTc-N4amG and 99mTc-GP were stable up to 6 hours, whereas 68Ga-GP was stable up to 2 hours. Cell culture studies confirmed radiolabeled N4amG and GP could penetrate the cell membrane through nucleoside transporters and amino acid transporters, respectively. Up to 40% of intracellular 99mTc-N4amG and 99mTc-GP was found within cell nucleus following 2 hours of incubation. Flow cytometry analysis revealed 99mTc-N4amG was a cell cycle S phase-specific agent. There was a significant difference of the uptake of 99mTc-GP between pre- and post- paclitaxel-treated cells, which suggests that 99mTc-GP may be useful in chemotherapy treatment monitoring. Moreover, radiolabeled N4amG and GP were tested in vivo using tumor-bearing animal models. 99mTc-N4amG showed an increase in tumor-to-muscle count density ratios up to 5 at 4 hour imaging. Both 99mTc-labeled agents showed decreased tumor uptake after paclitaxel treatment. Immunohistochemistry analysis demonstrated that the uptake of 99mTc-N4amG was correlated with Ki-67 expression. Both 99mTc-N4amG and 99mTc-GP could differentiate between tumor and inflammation in animal studies. Furthermore, 68Ga-GP was compared to 18F-FDG in rabbit PET imaging studies. 68Ga-GP had lower tumor standardized uptake values (SUV), but similar uptake dynamics, and different biodistribution compared with 18F-FDG. Finally, to demonstrate that GP can be a potential drug carrier for cancer theranostics, several drugs, including doxorubicin, were selected to be conjugated to GP. Imaging studies demonstrated that tumor uptake of GP-drug conjugates was increased as a function of time. GP-doxorubicin (GP-DOX) showed a slow-release pattern in in vitro cytotoxicity assay and exhibited anti-cancer efficacy with reduced toxicity in in vivo tumor growth delay study. In conclusion, both N4amG and GP are transporter-based targeting agents. Radiolabeled N4amG can be used for tumor cell proliferation assessment. GP is a potential agent for image-guided therapy and drug delivery.