5 resultados para Dispersive Estimates

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies in biostatistics deal with binary data. Some of these studies involve correlated observations, which can complicate the analysis of the resulting data. Studies of this kind typically arise when a high degree of commonality exists between test subjects. If there exists a natural hierarchy in the data, multilevel analysis is an appropriate tool for the analysis. Two examples are the measurements on identical twins, or the study of symmetrical organs or appendages such as in the case of ophthalmic studies. Although this type of matching appears ideal for the purposes of comparison, analysis of the resulting data while ignoring the effect of intra-cluster correlation has been shown to produce biased results.^ This paper will explore the use of multilevel modeling of simulated binary data with predetermined levels of correlation. Data will be generated using the Beta-Binomial method with varying degrees of correlation between the lower level observations. The data will be analyzed using the multilevel software package MlwiN (Woodhouse, et al, 1995). Comparisons between the specified intra-cluster correlation of these data and the estimated correlations, using multilevel analysis, will be used to examine the accuracy of this technique in analyzing this type of data. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this dissertation was to estimate HIV incidence among the individuals who had HIV tests performed at the Houston Department of Health and Human Services (HDHHS) public health laboratory, and to examine the prevalence of HIV and AIDS concurrent diagnoses among HIV cases reported between 2000 and 2007 in Houston/Harris County. ^ The first study in this dissertation estimated the cumulative HIV incidence among the individuals testing at Houston public health laboratory using Serologic Testing Algorithms for Recent HIV Seroconversion (STARHS) during the two year study period (June 1, 2005 to May 31, 2007). The HIV incidence was estimated using two independently developed statistical imputation methods, one developed by the Centers for Disease Control and Prevention (CDC), and the other developed by HDHHS. Among the 54,394 persons who tested for HIV during the study period, 942 tested HIV positive (positivity rate=1.7%). Of these HIV positives, 448 (48%) were newly reported to the Houston HIV/AIDS Reporting System (HARS) and 417 of these 448 blood specimens (93%) were available for STARHS testing. The STARHS results showed 139 (33%) out of the 417 specimens were newly infected with HIV. Using both the CDC and HDHHS methods, the estimated cumulative HIV incidences over the two-year study period were similar: 862 per 100,000 persons (95% CI: 655-1,070) by CDC method, and 925 per 100,000 persons (95% CI: 908-943) by HDHHS method. Consistent with the national finding, this study found African Americans, and men who have sex with men (MSM) accounted for most of the new HIV infections among the individuals testing at Houston public health laboratory. Using CDC statistical method, this study also found the highest cumulative HIV incidence (2,176 per 100,000 persons [95%CI: 1,536-2,798]) was among those who tested in the HIV counseling and testing sites, compared to the sexually transmitted disease clinics (1,242 per 100,000 persons [95%CI: 871-1,608]) and city health clinics (215 per 100,000 persons [95%CI: 80-353]. This finding suggested the HIV counseling and testing sites in Houston were successful in reaching high risk populations and testing them early for HIV. In addition, older age groups had higher cumulative HIV incidence, but accounted for smaller proportions of new HIV infections. The incidence in the 30-39 age group (994 per 100,000 persons [95%CI: 625-1,363]) was 1.5 times the incidence in 13-29 age group (645 per 100,000 persons [95%CI: 447-840]); the incidences in 40-49 age group (1,371 per 100,000 persons [95%CI: 765-1,977]) and 50 or above age groups (1,369 per 100,000 persons [95%CI: 318-2,415]) were 2.1 times compared to the youngest 13-29 age group. The increased HIV incidence in older age groups suggested that persons 40 or above were still at risk to contract HIV infections. HIV prevention programs should encourage more people who are age 40 and above to test for HIV. ^ The second study investigated concurrent diagnoses of HIV and AIDS in Houston. Concurrent HIV/AIDS diagnosis is defined as AIDS diagnosis within three months of HIV diagnosis. This study found about one-third of the HIV cases were diagnosed with HIV and AIDS concurrently (within three months) in Houston/Harris County. Using multivariable logistic regression analysis, this study found being male, Hispanic, older, and diagnosed in the private sector of care were positively associated with concurrent HIV and AIDS diagnoses. By contrast, men who had sex with men and also used injection drugs (MSM/IDU) were 0.64 times (95% CI: 0.44-0.93) less likely to have concurrent HIV and AIDS diagnoses. A sensitivity analysis comparing difference durations of elapsed time for concurrent HIV and AIDS diagnosis definitions (1-month, 3-month, and 12-month cut-offs) affected the effect size of the odds ratios, but not the direction. ^ The results of these two studies, one describing characteristics of the individuals who were newly infected with HIV, and the other study describing persons who were diagnosed with HIV and AIDS concurrently, can be used as a reference for HIV prevention program planning in Houston/Harris County. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluation of the impact of a disease on life expectancy is an important part of public health. Potential gains in life expectancy (PGLE) that can properly take into account the competing risks are an effective indicator for measuring the impact of the multiple causes of death. This study aimed to measure the PGLEs from reducing/eliminating the major causes of death in the USA from 2001 to 2008. To calculate the PGLEs due to the elimination of specific causes of death, the age-specific mortality rates for heart disease, malignant neoplasms, Alzheimer disease, kidney diseases and HIV/AIDS and life table constructing data were obtained from the National Center for Health Statistics, and the multiple decremental life tables were constructed. The PGLEs by elimination of heart disease, malignant neoplasms or HIV/AIDS continued decreasing from 2001 to 2008, but the PGLE by elimination of Alzheimer's disease or kidney diseases revealed increased trends. The PGLEs (by years) for all race, male, female, white, white male, white female, black, black male and black female at birth by complete elimination of heart disease 2001–2008 were 0.336–0.299, 0.327–0.301, 0.344–0.295, 0.360–0.315, 0.349–0.317, 0.371–0.316,0.278–0.251, 0.272–0.255, and 0.282–0.246 respectively. Similarly, the PGLEs (by years) for all race, male, female, white, white male, white female, black, black male and black female at birth by complete elimination of malignant neoplasms, Alzheimer's disease, kidney disease or HIV/AIDS 2001–2008 were also uncovered, respectively. Most diseases affect specific population, such as, HIV/AIDS tends to have a greater impact on people of working age, heart disease and malignant neoplasms have a greater impact on people over 65 years of age, but Alzheimer's disease and kidney diseases have a greater impact on people over 75 years of age. To measure the impact of these diseases on life expectancy in people of working age, partial multiple decremental life tables were constructed and the PGLEs were computed by partial or complete elimination of various causes of death during the working years. Thus, the results of the study outlined a picture of how each single disease could affect the life expectancy in age-, race-, or sex-specific population in USA. Therefore, the findings would not only assist to evaluate current public health improvements, but also provide useful information for future research and disease control programs.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation compares two different methodologies for calculating the national cost of epilepsy: provider-based survey method (PBSM) and the patient-based medical charts and billing method (PBMC&BM). The PBSM uses the National Hospital Discharge Survey (NHDS), the National Hospital Ambulatory Medical Care Survey (NHAMCS) and the National Ambulatory Medical Care Survey (NAMCS) as the sources of utilization. The PBMC&BM uses patient data, charts and billings, to determine utilization rates for specific components of hospital, physician and drug prescriptions. ^ The 1995 hospital and physician cost of epilepsy is estimated to be $722 million using the PBSM and $1,058 million using the PBMC&BM. The difference of $336 million results from $136 million difference in utilization and $200 million difference in unit cost. ^ Utilization. The utilization difference of $136 million is composed of an inpatient variation of $129 million, $100 million hospital and $29 million physician, and an ambulatory variation of $7 million. The $100 million hospital variance is attributed to inclusion of febrile seizures in the PBSM, $−79 million, and the exclusion of admissions attributed to epilepsy, $179 million. The former suggests that the diagnostic codes used in the NHDS may not properly match the current definition of epilepsy as used in the PBMC&BM. The latter suggests NHDS errors in the attribution of an admission to the principal diagnosis. ^ The $29 million variance in inpatient physician utilization is the result of different per-day-of-care physician visit rates, 1.3 for the PBMC&BM versus 1.0 for the PBSM. The absence of visit frequency measures in the NHDS affects the internal validity of the PBSM estimate and requires the investigator to make conservative assumptions. ^ The remaining ambulatory resource utilization variance is $7 million. Of this amount, $22 million is the result of an underestimate of ancillaries in the NHAMCS and NAMCS extrapolations using the patient visit weight. ^ Unit cost. The resource cost variation is $200 million, inpatient is $22 million and ambulatory is $178 million. The inpatient variation of $22 million is composed of $19 million in hospital per day rates, due to a higher cost per day in the PBMC&BM, and $3 million in physician visit rates, due to a higher cost per visit in the PBMC&BM. ^ The ambulatory cost variance is $178 million, composed of higher per-physician-visit costs of $97 million and higher per-ancillary costs of $81 million. Both are attributed to the PBMC&BM's precise identification of resource utilization that permits accurate valuation. ^ Conclusion. Both methods have specific limitations. The PBSM strengths are its sample designs that lead to nationally representative estimates and permit statistical point and confidence interval estimation for the nation for certain variables under investigation. However, the findings of this investigation suggest the internal validity of the estimates derived is questionable and important additional information required to precisely estimate the cost of an illness is absent. ^ The PBMC&BM is a superior method in identifying resources utilized in the physician encounter with the patient permitting more accurate valuation. However, the PBMC&BM does not have the statistical reliability of the PBSM; it relies on synthesized national prevalence estimates to extrapolate a national cost estimate. While precision is important, the ability to generalize to the nation may be limited due to the small number of patients that are followed. ^