6 resultados para Directional map
em DigitalCommons@The Texas Medical Center
Resumo:
While prior studies have focused on naïve (CD45RA+CD27+) and early stage memory (CD45RA-CD27+) CD8+ T cells, late memory CD8+ T cells (CD45RA+CD27) have received less interest because this subset of T cells is generally recognized as effectors, which produce IFNγ (but no IL-2) and perforin. However, multiple studies suggest that late memory CD8+ T cells may provide inadequate protection in infectious diseases and cancer models. To better understand the unique function of late memory CD8+ T cells, I optimized multi-color flow cytometry techniques to assess the cytokine production of each human CD8+ T cell maturation subset. I demonstrated that late memory CD8+ T cells are the predominant producer of CC chemokines (e.g. MIP-1β), but rarely produce IL-2; therefore they do not co-produce IL-2/IFNγ (polyfunctionality), which has been shown to be critical for protective immunity against chronic viral infection. These data suggest that late memory CD8+ T cells are not just cytotoxic effectors, but may have unique functional properties. Determining the molecular signature of each CD8+ T cell maturation subset will help characterize the role of late memory CD8+ T cells. Prior studies suggest that ERK1 and ERK2 play a role in cytokine production including IL-2 in T cells. Therefore, I tested whether differential expression of ERK1 and ERK2 in CD8+ T cell maturation subsets contributes to their functional signature by a novel flow cytometry technique. I found that the expression of total ERK1, but not ERK2, is significantly diminished in late memory CD8+ T cells and that ERK1 expression is strongly associated with IL-2 production and CD28 expression. I also found that IL-2 production is increased in late memory CD8+ T cells by over-expressing ERK1. Collectively, these data suggest that ERK1 is required for IL-2 production in human CD8+ T cells. In summary, this dissertation demonstrated that ERK1 is down-regulated in human late memory CD8+ T cells, leading to decreased production of IL-2. The data in this dissertation also suggested that the functional heterogeneity in human CD8+ T cell maturation subsets results from their differential ERK1 expression.
Resumo:
Nephroblastoma or Wilms' tumor is a pediatric renal malignancy that is the most frequently occurring childhood solid tumor. Approximately 1-2% of children with Wilms' tumor also present with aniridia, a congenital absence of all or part of the iris of the eye. These children also have high rates of genitourinary anomalies and mental retardation resulting in what is called the WAGR (Wilms' tumor, aniridia, genitourinary anomaly, mental retardation) syndrome. Cytogenetic analysis of metaphase chromosomes from these patients revealed a consistent deletion of band P13 on chromosome 11. These observations suggest close physical linkage between the disease-related loci, and further imply that development of each phenotype results from the loss of normal gene function.^ The objective of this work is to understand the molecular events at chromosome band 11p13 that are essential to the development of sporadic Wilms' tumor and sporadic aniridia. Two human/hamster somatic cell hybrids have been used to identify sixteen independent DNA probes that map to this segment of the human genome. These newly identified DNA probes and four previously reported probes (CAT, FSHB, D11S16, and HBVIS) have been used to subdivide 11p13 into five intervals defined by overlapping constitutional deletions from several WAGR patients. A long-range physical map of 11p13 has been constructed using each of these probes in Southern blot analysis of genomic DNA after digestion with infrequently cutting restriction enzymes and pulse-field gel electrophoresis. This map, established primarily with MluI and NotI, spans approximately 13 $\times$ 10$\sp{6}$ bp and encompasses deletion and translocation breakpoints associated with genitourinary anomalies, aniridia, and sporadic Wilms' tumor. This complete physical map of human chromosome band 11p13 enables us to localize the genes for sporadic Wilms' tumor and sporadic aniridia to a small number of specific NotI fragments. ^
Resumo:
Complete NotI, SfiI, XbaI and BlnI cleavage maps of Escherichia coli K-12 strain MG1655 were constructed. Techniques used included: CHEF pulsed field gel electrophoresis; transposon mutagenesis; fragment hybridization to the ordered $\lambda$ library of Kohara et al.; fragment and cosmid hybridization to Southern blots; correlation of fragments and cleavage sites with EcoMap, a sequence-modified version of the genomic restriction map of Kohara et al.; and correlation of cleavage sites with DNA sequence databases. In all, 105 restriction sites were mapped and correlated with the EcoMap coordinate system.^ NotI, SfiI, XbaI and BlnI restriction patterns of five commonly used E. coli K-12 strains were compared to those of MG1655. The variability between strains, some of which are separated by numerous steps of mutagenic treatment, is readily detectable by pulsed-field gel electrophoresis. A model is presented to account for the difference between the strains on the basis of simple insertions, deletions, and in one case an inversion. Insertions and deletions ranged in size from 1 kb to 86 kb. Several of the larger features have previously been characterized and some of the smaller rearrangements can potentially account for previously reported genetic features of these strains.^ Some aspects of the frequency and distribution of NotI, SfiI, XbaI and BlnI cleavage sites were analyzed using a method based on Markov chain theory. Overlaps of Dam and Dcm methylase sites with XbaI and SfiI cleavage sites were examined. The one XbaI-Dam overlap in the database is in accord with the expected frequency of this overlap. The occurrence of certain types of SfiI-Dcm overlaps are overrepresented. Of the four subtypes of SfiI-Dcm overlap, only one has a partial inhibitory effect on the activity of SfiI. Recognition sites for all four enzymes are rarer than expected based on oligonucleotide frequency data, with this effect being much stronger for XbaI and BlnI than for NotI and SfiI. The latter two enzyme sites are rare mainly due to apparent negative selection against GGCC (both) and CGGCCG (NotI). The former two enzyme sites are rare mainly due to effects of the VSP repair system on certain di-tri- and tetranucleotides, most notably CTAG. Models are proposed to explain several of the anomalies of oligonucleotide distribution in E. coli, and the biological significance of the systems that produce these anomalies is discussed. ^
Resumo:
Staphylococcus aureus is an opportunistic pathogen that is a major health threat in the clinical and community settings. An interesting hallmark of patients infected with S. aureus is that they do not usually develop a protective immune response and are susceptible to reinfection, in part because of the ability of S. aureus to modulate host immunity. The ability to evade host immune responses is a key contributor to the infection process and is critical in S. aureus survival and pathogenesis. This study investigates the immunomodulatory effects of two secreted proteins produced by S. aureus, the MHC class II analog protein (Map) and the extracellular fibrinogen-binding protein (Efb). Map has been demonstrated to modulate host immunity by interfering with T cell function. Map has been shown to significantly reduce T cell proliferative responses and significantly reduce delayed-type hypersensitivity responses to challenge antigen. In addition, the effects of Map on the infection process were tested in a mouse model of infection. Mice infected with Map− S. aureus (Map deficient strain) presented with significantly reduced levels of arthritis, osteomyelitis and abscess formation compared to mice infected with the wild-type Map+S. aureus strain suggesting that Map−S. aureus is much less virulent than Map+S. aureus. Furthermore, Map−S. aureus-infected nude mice developed arthritis and osteomyelitis to a severity similar to Map +S. aureus-infected controls, suggesting that T cells can affect disease outcome following S. aureus infection and Map may attenuate cellular immunity against S. aureus. The extracellular fibrinogen-binding protein (Efb) was identified when cultured S. aureus supernatants were probed with the complement component C3. The binding of C3 to Efb resulted in studies investigating the effects of Efb on complement activation. We have demonstrated that Efb can inhibit both the classical and alternative complement pathways. Moreover, we have shown that Efb can inhibit complement mediated opsonophagocytosis. Further studies have characterized the Efb-C3 binding interaction and localized the C3-binding domain to the C-terminal region of Efb. In addition, we demonstrate that Efb binds specifically to a region within the C3d fragment of C3. This study demonstrates that Map and Efb can interfere with both the acquired and innate host immune pathways and that these proteins contribute to the success of S. aureus in evading host immunity and in establishing disease. ^
Resumo:
The Caenorhabditis elegans germline is an excellent model system for studying meiosis, as the gonad contains germ cells in all stages of meiosis I prophase in a linear temporal and spatial pattern. To form healthy gametes, many events must be coordinated. Failure of any step in the process can reduce fertility. Here, we describe a C. elegans Germinal Center Kinase, GCK-1, that is essential for the accurate progression of germ cells through meiosis I prophase. In the absence of GCK-1, germ cells undergo precocious maturation due to the activation of a specific MAP kinase isoform. Furthermore, GCK-1 localizes to P-bodies, RNP particles that have been implicated in RNA degradation and translational control. Like two other components of C. elegans germline P-bodies, GCK-1 functions to limit physiological germ cell apoptosis. This is the first study to identify a role for a GCK-III kinase in metazoan germ cell development and to link P-body function with MAP kinase activation and germ cell maturation. ^