13 resultados para Direct Activity Exchange
em DigitalCommons@The Texas Medical Center
Resumo:
Mesenchymal stromal cell (MSC) therapy has shown promise for the treatment of traumatic brain injury (TBI). Although the mechanism(s) by which MSCs offer protection is unclear, initial in vivo work has suggested that modulation of the locoregional inflammatory response could explain the observed benefit. We hypothesize that the direct implantation of MSCs into the injured brain activates resident neuronal stem cell (NSC) niches altering the intracerebral milieu. To test our hypothesis, we conducted initial in vivo studies, followed by a sequence of in vitro studies. In vivo: Sprague-Dawley rats received a controlled cortical impact (CCI) injury with implantation of 1 million MSCs 6 h after injury. Brain tissue supernatant was harvested for analysis of the proinflammatory cytokine profile. In vitro: NSCs were transfected with a firefly luciferase reporter for NFkappaB and placed in contact culture and transwell culture. Additionally, multiplex, quantitative PCR, caspase 3, and EDU assays were completed to evaluate NSC cytokine production, apoptosis, and proliferation, respectively. In vivo: Brain supernatant analysis showed an increase in the proinflammatory cytokines IL-1alpha, IL-1beta, and IL-6. In vitro: NSC NFkappaB activity increased only when in contact culture with MSCs. When in contact with MSCs, NSCs show an increase in IL-6 production as well as a decrease in apoptosis. Direct implantation of MSCs enhances neuroprotection via activation of resident NSC NFkappaB activity (independent of PI3 kinase/AKT pathway) leading to an increase in IL-6 production and decrease in apoptosis. In addition, the observed NFkappaB activity depends on direct cell contact.
Resumo:
SSE1 and SSE2 encode the essential yeast members of the Hsp70-related Hsp110 molecular chaperone family. Both mammalian Hsp110 and the Sse proteins functionally interact with cognate cytosolic Hsp70s as nucleotide exchange factors. We demonstrate here that Sse1 forms high-affinity (Kd approximately 10-8 M) heterodimeric complexes with both yeast Ssa and mammalian Hsp70 chaperones and that binding of ATP to Sse1 is required for binding to Hsp70s. Sse1.Hsp70 heterodimerization confers resistance to exogenously added protease, indicative of conformational changes in Sse1 resulting in a more compact structure. The nucleotide binding domains of both Sse1/2 and the Hsp70s dictate interaction specificity and are sufficient for mediating heterodimerization with no discernible contribution from the peptide binding domains. In support of a strongly conserved functional interaction between Hsp110 and Hsp70, Sse1 is shown to associate with and promote nucleotide exchange on human Hsp70. Nucleotide exchange activity by Sse1 is physiologically significant, as deletion of both SSE1 and the Ssa ATPase stimulatory protein YDJ1 is synthetically lethal. The Hsp110 family must therefore be considered an essential component of Hsp70 chaperone biology in the eukaryotic cell.
Resumo:
Divergent relatives of the Hsp70 protein chaperone such as the Hsp110 and Grp170 families have been recognized for some time, yet their biochemical roles remained elusive. Recent work has revealed that these "atypical" Hsp70s exist in stable complexes with classic Hsp70s where they exert a powerful nucleotide-exchange activity that synergizes with Hsp40/DnaJ-type cochaperones to dramatically accelerate Hsp70 nucleotide cycling. This represents a novel evolutionary transition from an independent protein-folding chaperone to what appears to be a dedicated cochaperone. Contributions of the atypical Hsp70s to established cellular roles for Hsp70 now must be deciphered.
Resumo:
Endotoxemia from sepsis can injure the gastrointestinal tract through mechanisms that have not been fully elucidated. We have shown that LPS induces an increase in gastric permeability in parallel with the luminal appearance of secretory phospholipase A2 (sPLA2) and its product, lysophosphatidylcholine (lyso-PC). We proposed that sPLA2 acted on the gastric hydrophobic barrier, composed primarily of phosphatidylcholine (PC), to degrade it and produce lyso-PC, an agent that is damaging to the mucosa. In the present study, we have tested whether lyso-PC and/or sPLA2 have direct damaging effects on the hydrophobic barriers of synthetic and mucosal surfaces. Rats were administered LPS (5 mg/kg, i.p.), and gastric contents were collected 5 h later for analysis of sPLA2 and lyso-PC content. Using these measured concentrations, direct effects of sPLA2 and lyso-PC were determined on (a) surface hydrophobicity as detected with an artificial PC surface and with intact gastric mucosa (contact angle analysis) and (b) cell membrane disruption of gastric epithelial cells (AGS). Both lyso-PC and sPLA2 increased significantly in the collected gastric juice of LPS-treated rats. Using similar concentrations to the levels in gastric juice, the contact angle of PC-coated slides declined after incubation with either pancreatic sPLA2 or lyso-PC. Similarly, gastric contact angles seen in control rats were significantly decreased in sPLA2 and lyso-PC-treated rats. In addition, we observed dose-dependent injurious effects of both lyso-PC and sPLA2 in gastric AGS cells. An LPS-induced increase in sPLA2 activity in the gastric lumen and its product, lyso-PC, are capable of directly disrupting the gastric hydrophobic layer and may contribute to gastric barrier disruption and subsequent inflammation.
Resumo:
In vitro, RecA protein catalyses the exchange of single strands of DNA between different DNA molecules with sequence complementarity. In order to gain insight into this complex reaction and the roles of ATP binding and hydrolysis, two different approaches have been taken. The first is to use short single-stranded deoxyoligonucleotides as the ssDNA in strand exchange. These were used to determine the signal for hydrolysis and the structure of the RecA-DNA complex that hydrolyses ATP. I present a defined kinetic analysis of the nucleotide triphosphatase activity of RecA protein using short oligonucleotides as ssDNA cofactor. I compare the effects of both homopolymers and mixed base composition oligomers on the ATPase activity of RecA protein. I examine the steady state kinetic parameters of the ATPase reaction using these oligonucleotides as ssDNA cofactor, and show that although RecA can both bind to, and utilise, oligonucleotides 7 to 20 residues in length to support the repressor cleavage activity of RecA, these oligonucleotides are unable to efficiently stimulate the ATPase activity of RecA protein. I show that the K$\sb{\rm m}\sp{\rm ATP}$, the Hill coefficient for ATP binding, the extent of reaction, and k$\sb{\rm cat}$ are all a function of ssDNA chain length and that secondary structure may also play a role in determining the effects of a particular chain length on the ATPase activity of RecA protein.^ The second approach is to utilise one of the many mutants of RecA to gain insight into this complex reaction. The mutant selected was RecA1332. Surprisingly, in vitro, this mutant possesses a DNA-dependent ATPase activity. The K$\sb{\rm m}\sp{\rm ATP}$, Hill coefficient for ATP binding, and K$\sb{\rm m}\sp{\rm DNA}$ are similar to that of wild type. k$\sb{\rm cat}$ for the ATPase activity is reduced 3 to 12-fold, however. RecA1332 is unable to use deoxyoligonucleotides as DNA cofactors in the ATPase reaction, and demonstrates an increased sensitivity to inhibition by monovalent ions. It is able to perform strand exchange with ATP and ATP$\lbrack\gamma\rbrack$S but not with UTP, whereas the wild type protein is able to use all three nucleotide triphosphates. RecA1332 appears to be slowed in its ability to form intermediates and to convert these intermediates to products. (Abstract shortened by UMI.) ^
Resumo:
Objectives. The purpose of this study was to identify the psychosocial and environmental predictors and the pathways they use to influence calcium intake, physical activity and bone health among adolescent girls. Methods. A secondary data analysis using a cross-sectional and longitudinal study design was implemented to examine the associations of interest. Data from the Incorporating More Physical Activity and Calcium in Teens (IMPACT) study collected in 2001-2003 were utilized for the analyses. IMPACT was a 1½ year nutrition and physical activity intervention study conducted among 718 middle-school girls in central Texas. Hierarchical regression modeling and Structural Equation Modeling (SEM) were used to determine the psychosocial predictors of calcium intake, physical activity and bone health at baseline. Hierarchical regression was used to determine if psychosocial factors at baseline were significant predictors of calcium intake and physical activity at follow-up. Data was adjusted for included BMI, lactose intolerance, ethnicity, menarchal status, intervention and participation in 7th grade PE/athletics. Results. Results of the baseline regression analysis revealed that calcium self-efficacy and milk availability at home were the strongest predictors of calcium intake. Friend engagement in physical activity, physical activity self-efficacy and participation in sports teams were the strongest predictors of physical activity. Finally, physical activity outcome expectations, social support and participation in sports teams were significant predictors of stiffness index at baseline. Results of the baseline SEM path analysis found that outcome expectations and milk availability at home directly influenced calcium intake. Knowledge and calcium self-efficacy indirectly influenced calcium intake with outcome expectations as the mediator. Physical activity self-efficacy and social support had significant direct and indirect influence on physical activity with participation in sports teams as the mediator. Participation in sports teams had a direct effect on both physical activity and stiffness index. Results of regression analysis for baseline predicting follow-up showed that participation in sports teams, self-efficacy, outcome expectations and social support at baseline were significant predictors of physical activity at follow-up. Conclusion. Results of this study reinforce the relevance of addressing both, psychosocial and environmental factors which are critical when developing interventions to improve bone health among adolescent girls. ^
Resumo:
Background. With the rapid rise in childhood obesity, physical activity participation among young children has become the subject of much recent attention. Physical education classes have been specifically targeted as a method of providing opportunities for all children to be active. Unfortunately, student participation in moderate-to-vigorous physical activity during these classes still falls far below the current recommendations. While some research to date has reported the levels of activity among elementary-aged children, research is limited on the relationship between these activity levels and the environmental characteristics that exist within the PE classroom. ^ Purpose. The purpose of this study is to examine the association between specific classroom characteristics and contextual characteristics (lesson context, class size, class location, teacher gender, and teacher encouragement for PA) with elementary aged children's moderate-to-vigorous activity during PE class. ^ Methods. A secondary analysis of 211 3rd, 4th and 5th grade physical education classes amongst 39 elementary schools in Harris County, TX and 35 elementary schools in Travis County, TX was conducted using cross-sectional data from the evaluation of a school-based health program. Lesson context and student activity levels were measured using a direct observation measurement tool. Additionally, these variables were further analyzed against a number of classroom characteristics to determine any significant associations. ^ Results. Overall, elementary PE classes are still participating in low levels of moderate-to-vigorous physical activity averaging only 38% of class time. Additionally, close to 25% of class time is spent in classroom management. Male directed classes spent significantly more time in game activities and female directed classes spent more time in fitness, knowledge, and skill activities. Classes that took place outdoors were more active and spent more time in games than those that took place indoors. Significant correlations were demonstrated between class size and time spent in management context. Time spent in management context was also correlated with time spent sitting and standing. Additionally, positive correlations were demonstrated between time very active and teachers that praised students and encouraged physical activity among their classes.^
Resumo:
The Surgeon General recommends preschoolers 3-5 years old accumulate 60 minutes of moderate-to-vigorous physical activity (MVPA) per day. However, there is limited data measuring physical activity (PA) and MVPA amongst this population. The purpose of this cross-sectional study is to determine the validity, reliability, and feasibility of using MVP 4 Function Walk4Life digital pedometers (MVP-4) in measuring MVPA among preschoolers using the newly modified direct observational technique, System for Observing Fitness Instruction Time-Preschool Version (SOFIT-P) as the gold standard. An ethnically diverse population of 3-5 year old underserved children were recruited from two Harris County Department of Education (HCDE) Head Start centers. For 2 days at baseline and 2 days at post-test, 75 children enrolled wore MVP-4 pedometers for approximately 6-hours per observation day and were observed using SOFIT-P during predominantly active times. Statistical analyses used Pearson "r" correlation coefficients to determine mean minutes of PA and MVPA, convergent and criterion validity, and reliability. Significance was set at p = <0.05. Feasibility was determined through process evaluation information collected during this study via observations from data collectors and teacher input. Results show mean minutes of PA and MVPA ranged between 30-42 and 11-14 minutes, respectively. Convergent validity comparing BMI percentiles with MVP-4 PA outcomes show no significance at pre-test; however, each measurement at post-test showed significance for MVPA (p = 0.0247, p = 0.0056), respectively. Criterion validity comparing percent MVPA time between SOFIT-P and MVP-4 pedometers was determined; however, results deemed insufficient due to inconsistency in observation times while using the newly developed SOFIT-P. Reliability measures show no significance at pre-test, yet show significant results for all PA outcomes at post-test (p = 0.001, p = 0.001, p = 0.0010, p = 0.003), respectively. Finally, MVP-4 pedometers lacked feasibility due to logistical barriers in design. Researchers feel the significant results at post-test are secondary to increased familiarity and more accurate placement of pedometers across time. Researchers suggest manufacturers of MVP-4 pedometers further modify the instrument for ease of use with this population, following which future studies ought to determine validity using objective measures or all-day direct observation techniques.^
Resumo:
The built environment is recognized as having an impact on health and physical activity. Ecological theories of physical activity suggest that enhancing access to places to be physically active may increase activity levels. Studies show that users of fitness facilities are more likely to be active than inactive and active people are more likely to report access to fitness facilities. The purpose of this study was to examine the ecologic relationship between density of fitness facilities and self-reported levels of physical activity in adults in selected Metropolitan Statistical Areas (MSAs) in the United States.^ The 2007 MSA Business Patterns and the 2007 Behavioral Risk Factor Surveillance System (BRFSS) were used to gather fitness facility and physical activity data for 141 MSAs in the United States. Pearson correlations were performed between fitness facility density (number of facilities/100,000 people) and six summary measures of physical activity prevalence. Regional analysis was done using the nine U.S. Standard Regions for Temperature and Precipitation. ^ Direct correlations between fitness facility density and the percent of those physically active (r=0.27, 95% CI 0.11, 0.42, p=0.0012), those meeting moderate-intensity activity guidelines, (r=0.23, 95% CI 0.07, 0.38, p=0.006), and those meeting vigorous-intensity activity guidelines (r=0.30, 95% CI 0.14, 0.44, p=0.003) were found. An inverse correlation was found between fitness facility density and the percent of people physically inactive (r=-0.45, 95% CI -0.57, -0.31), p<0.0001). Regional analysis showed the same trends across most regions.^ Access to fitness facilities, defined here as fitness facility density, is related to physical activity levels. Results suggest the potential importance of the influence of the built environment on physical activity behaviors. Public health officials and city planners should consider the possible positive effect that increasing the number of fitness facilities in communities would have on activity levels.^
Resumo:
This study examines variations in physical activity by season, and within seasons by age and gender among park users living in the Cameron Park Colonia, a low-income Hispanic community along the Texas-Mexico border. This is the first study of its kind to evaluate seasonal variations by physical activity among a Hispanic population. We hypothesized that (1) there are no differences in overall physical activity by season; (2) youth engage in more sport-related physical activity compared to adults, (3) males engage in more physical activity than females, and (4) there are differences in physical activity between walk-trail users compared to non walk-trail users in the park.^ Physical activity behavioral data was collected (males n=2,093; females n=1,014) at two time periods (winter 2007; summer 2007) via direct observations and assessed park use, walking trail use, and physical activity (moderate-to-vigorous physical activity (MVPA) by seasons. Frequencies for physical activities were calculated for gender, age groups, and season. Separate Pearson's chi-square analyses were used to address variations in physical activity, age, gender, intensity level of physical activity by season, between walk-trails users and non walk-trail users.^ People visiting the park engaged in more sedentary behavior in winter than summer and a higher percentage engaged in MVPA in the summer than winter (p<.05). More females engaged in light activity compared to males (p<.05). Walk-trail users consisted mostly of females and engaged in more light activity than non walk-trail users (p<.05) who participated in more MVPA.^ Increasing access to parks and walk-trails may be an intervention strategy to increase physical activity among Hispanics. More research is needed to assess promoting trail use and determining long-term effects on physical activity among minority/ethnic groups at greater risk of a sedentary lifestyle and reasons for trail use and non-use. Future studies should focus on the types of activities Hispanics engage in at different parks particularly between men and women. As a result of this study city officials and planners may use this information to build and design parks that cater to the types of activities that Hispanics engage in and may use to meet physical activity guidelines.^
Resumo:
The natural environment and green spaces are settings that may facilitate physical activity and, as a result, combat childhood obesity and benefit children's physical health. A systematic review was conducted to assess the effect of children's engagement in outdoor activity on children's physical activity levels. A total of 169 articles were initially identified, of which 11 were eligible for inclusion in the systematic review. Studies were heterogeneous: cross-sectional, RCT, cohort, and direct observation. Study participants were between the ages of 3-15 years, and physical activity was measured by accelerometers, pedometers, direct observation or surveys. A majority of the studies (9/11) found a positive association between time spent outdoors and physical activity in children and adolescents. Of these 9 studies, 5 found this association specifically between time spent outdoors in greenspace and physical activity. Despite limitations, the findings of this review support the positive association between time spent outdoors and physical activity in children and adolescents, and the notion that children and adolescents who spend more time outdoors are more physically active. This demonstrates the need to use outdoor environments as settings for children's and adolescents' physical activity.^
Resumo:
Despite having been identified over thirty years ago and definitively established as having a critical role in driving tumor growth and predicting for resistance to therapy, the KRAS oncogene remains a target in cancer for which there is no effective treatment. KRas is activated b y mutations at a few sites, primarily amino acid substitutions at codon 12 which promote a constitutively active state. I have found that different amino acid substitutions at codon 12 can activate different KRas downstream signaling pathways, determine clonogenic growth potential and determine patient response to molecularly targeted therapies. Computer modeling of the KRas structure shows that different amino acids substituted at the codon 12 position influences how KRas interacts with its effecters. In the absence of a direct inhibitor of mutant KRas several agents have recently entered clinical trials alone and in combination directly targeting two of the common downstream effecter pathways of KRas, namely the Mapk pathway and the Akt pathway. These inhibitors were evaluated for efficacy against different KRAS activating mutations. An isogenic panel of colorectal cells with wild type KRas replaced with KRas G12C, G12D, or G12V at the endogenous loci differed in sensitivity to Mek and Akt inhibition. In contrast, screening was performed in a broad panel of lung cell lines alone and no correlation was seen between types of activating KRAS mutation due to concurrent oncogenic lesions. To find a new method to inhibit KRAS driven tumors, siRNA screens were performed in isogenic lines with and without active KRas. The knockdown of CNKSR1 (CNK1) showed selective growth inhibition in cells with an oncogenic KRAS. The deletion of CNK1 reduces expression of mitotic cell cycle proteins and arrests cells with active KRas in the G1 phase of the cell cycle similar to the deletion of an activated KRas regardless of activating substitution. CNK1 has a PH domain responsible for localizing it to membrane lipids making KRas potentially amenable to inhibition with small molecules. The work has identified a series of small molecules capable of binding to this PH domain and inhibiting CNK1 facilitated KRas signaling.
Resumo:
In this thesis, I investigated the effect of cylic AMP-dependent protein kinase (PKA) on v-Mos kinase activity. Increase in PKA activity in vivo brought about either by forskolin treatment or by overexpression of the PKA catalytic subunit resulted in a significant inhibition of v-Mos kinase activity. The purified PKA catalytic subunit was able to phosphorylate recombinant p37$\rm\sp{v-mos}$ in vitro, suggesting that the mechanism of in vivo inhibition of v-Mos kinase involves direct phosphorylation by PKA. Ser-263 was identified as a residue that is normally phosphorylated at a very low level but whose phosphorylation is dramatically increased upon forskolin treatment. Consistent with the inhibitory role of Ser-263 phosphorylation, the Ala-263 mutant of v-Mos was not inhibited by forskolin treatment. Based on our results, we propose that the known inhibitory role of PKA in the initiation of oocyte maturation could be explained at least in part by its inhibition of Mos kinase.^ Combining tryptic phosphopeptide two-dimensional mapping analysis and in vitro mutagenesis studies, I identified Ser-56 as the major in vivo phosphorylation site on v-Mos. I studied the interrelationship between Ser-34 and Ser-56 phosphorylation in regulating v-Mos function. After site-directed mutagenesis to substitute serine residues with alanine or glutamic acid in different combinations to mimick unphosphorylated and phosphorylated serines respectively, various v-Mos mutants were expressed in COS-1 cells. As expected, Ala-34 mutant of v-Mos had very low (less 5% of wild type) kinase activity. The Ala-56 mutant had kinase activity 50% that of wild type. Surprisingly, the Ala-34 Ala-56 double mutant and the Ala-56 mutant exhibited identical kinase activity. On the other hand, Ala-34 Glu-56 double mutant had reduced kinase activity comparable to Ala-34 mutant. These results suggest that the phosphorylation at Ser-56 may serve to inhibit the activation of newly synthesized Mos protein. As predicted from Xenopus c-Mos studies, Glu-34 mutant of v-Mos was highly active (125% that of wild type). Interestingly, consistant with the model involving an inhibitory role of Ser-56 phosphorylation, the Glu-34 Glu-56 double mutant was totally inactive as a kinase. Moreover in my experiments, there was a perfect correlation between the level of v-Mos kinase activity of various mutants and their transforming activity. The latter is dependent upon MEK1 phosphorylation/ activation in v-mos transformed cells. Residues corresponding to both v-Mos Ser-34 and Ser-56 are evolutionarily conserved in c-Mos. Therefore, the cytostatic factor function of c-Mos may be regulated in the same manner as v-Mos kinase activity.^ It has been known that v-mos transforms cells by affecting G1 phase progression of the cell cycle. Here I showed that mos induces cyclin D1 expression in mos transformed NIH 3T3 cells and NRK 6m2 cells, and this induced level was found to be unaffected by serum starvation. Consequently, cyclin D1-Cdk4 and cyclin E-Cdk2 activities increase, and retinoblastoma protein is hyperphosphorylated. Based on studies from several laboratories, these findings suggest that increased amount of cyclin D1-Cdk4 complexes ties up the limited amount of cyclin E-Cdk2 inhibitors (e.g. p27), causing the activation of cyclin E-Cdk2. My results indicate that activation of key cell cycle regulators of G1 phase may be important for cellular transformation by mos. (Abstract shortened by UMI.) ^