4 resultados para Differentiated effects
em DigitalCommons@The Texas Medical Center
Resumo:
The vertebrate $\beta$-galactoside-binding lectins galectin-1 and galectin-3 have been proposed to function in diverse cellular processes such as adhesion, proliferation, differentiation, and tumorigenesis. Experiments were initiated to further study the functional properties of these molecules. A prostate cancer cell line, LNCaP, was identified which expressed neither galectin. This line was stably transfected with cDNA for either galectin-1 or galectin-3. The resultant clones were used to study effects on critical cell processes. LNCaP cells expressing galectin-1 on the surface were found to bind more rapidly than control lines to the human extracellular matrix proteins laminin and fibronectin, although overall binding was not increased. To analyze effects on differentiation, LNCaP cells were studied which had either been transfected with galectin-1 or which had been induced to express endogenous galectin-1 by treatment with the differentiation agent sodium butyrate. In both cases, cells displayed a slower rate of growth and increased rate of apoptosis. A transient decrease in expression of prostate specific antigen was seen in the butyrate treated cells but not in the transfected cells. To investigate the role of galectins in the process of malignant transformation and progression, immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded sections of human prostate tissue, the premalignant lesion prostatic intraepithelial neoplasia, primary adenocarcinoma of the prostate, and foci of metastatic prostate cancer. Galectin-1 expression was relatively constant throughout in contrast to galectin-3 which demonstrated significantly less expression in primary and metastatic tumors. LNCaP cells transfected with galectin-3 cDNA displayed lower proliferation rates, increased spontaneous apoptosis, and G1 growth phase arrest compared to controls. Four of six galectin-3 lines tested were less tumorigenic in nude mice than controls. The following conclusions are drawn regarding the role of galectin-1 and galectin-3 expression in the context of prostate cancer: (1) galectin-1 may participate in the early stages of cancer cell adhesion to extracellular matrix proteins; (2) galectin-1 expression results in a differentiated phenotype and may contribute to differentiation induction by butyrate; (3) galectin-3 expression correlates inversely with prostate cell tumorigenesis and prostate cancer metastasis. ^
Resumo:
Colon cancer is the second leading cause of cancer mortality in the U.S. Surgery is the only truly effective human colon cancer (HCC) therapy due to marked intrinsic drug resistance. The inefficacy of therapies developed for metastatic HCC suggests that advances in colon cancer chemoprevention and chemotherapy will be needed to reduce HCC mortality. The dietary fiber metabolite butyrate (NaB) is a candidate cancer chemopreventive agent that inhibits growth, promotes differentiation and stimulates apoptosis of HCC cells. Epidemiological and experimental studies suggest that dietary fiber protects against the development of HCC, however, recent large prospective trials have not found significant protection. ^ The first central hypothesis of this dissertation project is that the diversity of phenotypic changes induced by NaB in HCC cells includes molecular alterations that oppose its chemopreventive action and thereby limit its efficacy. We investigated the effect of NaB on the expression/activity of epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) in HCC HT29 cells. NaB treatment induced a 13-fold increase in EGFR expression in concert with its chemopreventive action in vitro, i.e., induction of growth suppression and G1 arrest, apoptosis and a differentiated phenotype. NaB-induced EGFR was active based on multiple lines of evidence. The EGFR was: (1) heavily phosphorylated at Tyrosine (P-Tyr); (2) associated with the cytoskeleton; (3) localized at the cell surface, and activated in response to EGF; and (4) NaB treatment of the cells induced activation of the EGFR effector Erk1/2. NaB treatment also induced a 7-fold increase in COX-2 expression. The NaB-induced COX-2 was active based on significantly increased PGE2 production. ^ The second central hypothesis is that NaB treatment would render HCC cells more chemosensitive to chemotherapy agents based on the increased apoptotic index induced by NaB. NaB treatment chemosensitized HT29 cells to 5-FU and doxorubicin, despite increases in the expression of P-glycoprotein and a related drug resistance protein (MRP). ^ These results raise the intriguing possibility that the chemopreventive effects of fiber may require concomitant treatment with EGFR and/or COX-2 inhibitors. Similarly, NaB may be a rational drug to combine with existing chemotherapeutic agents for the management of advanced HCC patients. ^
Resumo:
Thoracic Aortic Aneurysms and Dissections (TAAD) are the fifteenth leading cause of death in the United States. About 15% of TAAD patients have family history of the disease. The most commonly mutated gene in these families is ACTA2, encoding smooth muscle-specific α-actin. ACTA2 missense mutations predispose individuals both to TAAD and to vascular occlusive disease of small, muscular arteries. Mice carrying an Acta2 R258C mutant transgene with a wildtype Acta2 promoter were generated and bred with Acta2-/- mice to decrease the wildtype: mutant Acta2 ratio. Acta2+/+ R258C TGmice have decreased aortic contractility without aortic disease. Acta2+/- R258C TG mice, however, have significant aortic dilatations by 12 weeks of age and a hyperproliferative response to injury. We characterized smooth muscle cells (SMCs) from bothmouse models under the hypothesis that mutant α-actin has a dominant negative effect, leading to impaired contractile filament formation/stability, improper focal adhesion maturation and increased proliferation. Explanted aortic SMCs from Acta2+/+ R258C TG mice are differentiated - they form intact filaments, express higher levels of contractile markers compared to wildtype SMCs and have predominantly nuclear Myocardin-Related Transcription Factor A (MRTF-A) localization. However, ultracentrifugation assays showed large unpolymerized actin fractions, suggesting that the filaments are brittle. In contrast, Acta2+/- R258C TG SMCs are less well-differentiated, with pools of unpolymerized actin, more cytoplasmic MRTF-A and decreased contractile protein expression compared to wildtype cells. Ultracentrifugation assays after treating Acta2+/- R258C TGSMCs with phalloidin showed actin filament fractions, indicating that mutant α-actin can polymerize into filaments. Both Acta2+/+ R258C TGand Acta2+/- R258C TGSMCs have larger and more peripheral focal adhesions compared to wildtype SMCs. Rac1 was more activated in Acta2+/+ R258C TGSMCs; both Rac1 and RhoA were less activated in Acta2+/- R258C TG SMCs, and FAK was more activated in both transgenic SMC lines compared to wildtype. Proliferation in both cell lines was significantly increased compared to wildtype cells and could be partially attenuated by inhibition of FAK or PDGFRβ. These data support a dominant negative effect of the Acta2 R258C mutation on the SMC phenotype, with increasing phenotypic severity when wildtype: mutant α-actin levels are decreased.
Resumo:
A newly described subset of monocytes has been identified in peritoneal exudate cells (PEC) from the malignant ascites of patients with ovarian cancer. These cells were characterized by the production of IL-10 and TGF-β2, but not IL-12, IL-1α, or TNF-α, and expressed CD14, CD16, and CD54, but not HLA-DR, CD80, CD86, CD11a, CD11b, or CD25 cell surface antigens. Since this subset of monocytes could affect the modulation of tumor immune responses in vivo, studies were undertaken to determine their effect on the activation and proliferation of autologous T-cells from the peritoneal cavity of patients with ovarian carcinoma. Cytokine transcripts, including IL-2, GM-CSF, and IFN-γ were detected in T-cells isolated from patient specimens that also contained the IL-10 producing monocytes, although the IFN-γ and IL-2 proteins could not be detected in T-cells co-incubated with the IL-10 producing monocytes in vitro. Additionally, IL-10 producing monocytes co-cultured with autologous T-cells inhibited the proliferation of the T-cells in response to PHA. T-cell proliferation and cytokine protein production could be restored by the addition of neutralizing antibodies to IL-10R and TGF-β to the co-culture system. These results suggested that this subset of monocytes may modulate antitumor immune responses by inhibiting T-cell proliferation and cytokine protein production. Further studies determined that the precursors to the inhibitory monocytes were tumor-associated and only present in the peripheral blood of patients with ovarian cancer and not present in the peripheral blood of healthy donors. These precursors could be induced to the suppressor phenotype by the addition of IL-2 and GM-CSF, two cytokines detected in the peritoneal cavity of ovarian cancer patients. Lastly, it was shown that the suppressor monocytes from the peritoneal cavity of ovarian cancer patients could be differentiated to a non-inhibitory phenotype by the addition of TNF-α and IFN-γ to the culture system. The differentiated monocytes did not produce IL-10, expressed the activation antigens HLA-DR, CD80, and CD86, and were able to stimulate autologous T-cells in vitro. Since a concomitant reduction in immune function is associated with tumor growth and progression, the effects of these monocytes are of considerable importance in the context of tumor immunotherapy. ^