6 resultados para Diagnostic Algorithm Development
em DigitalCommons@The Texas Medical Center
Resumo:
Proton therapy has become an increasingly more common method of radiation therapy, with the dose sparing to distal tissue making it an appealing option, particularly for treatment of brain tumors. This study sought to develop a head phantom for the Radiological Physics Center (RPC), the first to be used for credentialing of institutions wishing to participate in clinical trials involving brain tumor treatment of proton therapy. It was hypothesized that a head phantom could be created for the evaluation of proton therapy treatment procedures (treatment simulation, planning, and delivery) to assure agreement between the measured dose and calculated dose within ±5%/3mm with a reproducibility of ±3%. The relative stopping power (RSP) and Hounsfield Units (HU) were measured for potential phantom materials and a human skull was cast in tissue-equivalent Alderson material (RLSP 1.00, HU 16) with anatomical airways and a cylindrical hole for imaging and dosimetry inserts drilled into the phantom material. Two treatment plans, proton passive scattering and proton spot scanning, were created. Thermoluminescent dosimeters (TLDs) and film were loaded into the phantom dosimetry insert. Each treatment plan was delivered three separate times. Each treatment plan passed our 5%/3mm criteria, with a reproducibility of ±3%. The hypothesis was accepted and the phantom was found to be suitable for remote audits of proton therapy treatment facilities.
Resumo:
Nuclear morphometry (NM) uses image analysis to measure features of the cell nucleus which are classified as: bulk properties, shape or form, and DNA distribution. Studies have used these measurements as diagnostic and prognostic indicators of disease with inconclusive results. The distributional properties of these variables have not been systematically investigated although much of the medical data exhibit nonnormal distributions. Measurements are done on several hundred cells per patient so summary measurements reflecting the underlying distribution are needed.^ Distributional characteristics of 34 NM variables from prostate cancer cells were investigated using graphical and analytical techniques. Cells per sample ranged from 52 to 458. A small sample of patients with benign prostatic hyperplasia (BPH), representing non-cancer cells, was used for general comparison with the cancer cells.^ Data transformations such as log, square root and 1/x did not yield normality as measured by the Shapiro-Wilks test for normality. A modulus transformation, used for distributions having abnormal kurtosis values, also did not produce normality.^ Kernel density histograms of the 34 variables exhibited non-normality and 18 variables also exhibited bimodality. A bimodality coefficient was calculated and 3 variables: DNA concentration, shape and elongation, showed the strongest evidence of bimodality and were studied further.^ Two analytical approaches were used to obtain a summary measure for each variable for each patient: cluster analysis to determine significant clusters and a mixture model analysis using a two component model having a Gaussian distribution with equal variances. The mixture component parameters were used to bootstrap the log likelihood ratio to determine the significant number of components, 1 or 2. These summary measures were used as predictors of disease severity in several proportional odds logistic regression models. The disease severity scale had 5 levels and was constructed of 3 components: extracapsulary penetration (ECP), lymph node involvement (LN+) and seminal vesicle involvement (SV+) which represent surrogate measures of prognosis. The summary measures were not strong predictors of disease severity. There was some indication from the mixture model results that there were changes in mean levels and proportions of the components in the lower severity levels. ^
Resumo:
The PROPELLER (Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction) magnetic resonance imaging (MRI) technique has inherent advantages over other fast imaging methods, including robust motion correction, reduced image distortion, and resistance to off-resonance effects. These features make PROPELLER highly desirable for T2*-sensitive imaging, high-resolution diffusion imaging, and many other applications. However, PROPELLER has been predominantly implemented as a fast spin-echo (FSE) technique, which is insensitive to T2* contrast, and requires time-inefficient signal averaging to achieve adequate signal-to-noise ratio (SNR) for many applications. These issues presently constrain the potential clinical utility of FSE-based PROPELLER. ^ In this research, our aim was to extend and enhance the potential applications of PROPELLER MRI by developing a novel multiple gradient echo PROPELLER (MGREP) technique that can overcome the aforementioned limitations. The MGREP pulse sequence was designed to acquire multiple gradient-echo images simultaneously, without any increase in total scan time or RF energy deposition relative to FSE-based PROPELLER. A new parameter was also introduced for direct user-control over gradient echo spacing, to allow variable sensitivity to T2* contrast. In parallel to pulse sequence development, an improved algorithm for motion correction was also developed and evaluated against the established method through extensive simulations. The potential advantages of MGREP over FSE-based PROPELLER were illustrated via three specific applications: (1) quantitative T2* measurement, (2) time-efficient signal averaging, and (3) high-resolution diffusion imaging. Relative to the FSE-PROPELLER method, the MGREP sequence was found to yield quantitative T2* values, increase SNR by ∼40% without any increase in acquisition time or RF energy deposition, and noticeably improve image quality in high-resolution diffusion maps. In addition, the new motion algorithm was found to improve the performance considerably in motion-artifact reduction. ^ Overall, this work demonstrated a number of enhancements and extensions to existing PROPELLER techniques. The new technical capabilities of PROPELLER imaging, developed in this thesis research, are expected to serve as the foundation for further expanding the scope of PROPELLER applications. ^
Resumo:
Sexually transmitted infections (STIs) are a major public health problem, and controlling their spread is a priority. According to the World Health Organization (WHO), there are 340 million new cases of treatable STIs among 15–49 year olds that occur yearly around the world (1). Infection with STIs can lead to several complications such as pelvic inflammatory disorder (PID), cervical cancer, infertility, ectopic pregnancy, and even death (1). Additionally, STIs and associated complications are among the top disease types for which healthcare is sought in developing nations (1), and according to the UNAIDS report, there is a strong connection between STIs and the sexual spread of HIV infection (2). In fact, it is estimated that the presence of an untreated STI can increase the likelihood of contracting and spreading HIV by a factor up to 10 (2). In addition, developing countries are poorer in resources and lack inexpensive and precise diagnostic laboratory tests for STIs, thereby exacerbating the problem. Thus, the WHO recommends syndromic management of STIs for delivering care where lab testing is scarce or unattainable (1). This approach utilizes the use of an easy to use algorithm to help healthcare workers recognize symptoms/signs so as to provide treatment for the likely cause of the syndrome. Furthermore, according to the WHO, syndromic management offers instant and legitimate treatment compared to clinical diagnosis, and that it is also more cost-effective for some syndromes over the use of laboratory testing (1). In addition, even though it has been shown that the vaginal discharge syndrome has low specificity for gonorrhea and Chlamydia and can lead to over treatment (1), this is the recommended way to manage STIs in developing nations. Thus, the purpose of this paper is to specifically address the following questions: is syndromic management working to lower the STI burden in developing nations? How effective is it, and should it still be recommended? To answer these questions, a systematic literature review was conducted to evaluate the current effectiveness of syndromic management in developing nations. This review examined published articles over the past 5 years that compared syndromic management to laboratory testing and had published sensitivity, specificity, and positive predicative value data. Focusing mainly on vaginal discharge, urethral discharge, and genital ulcer algorithms, it was seen that though syndromic management is more effective in diagnosing and treating urethral and genial ulcer syndromes in men, there still remains an urgent need to revise the WHO recommendations for managing STIs in developing nations. Current studies have continued to show decreased specificity, sensitivity and positive predicative values for the vaginal discharge syndrome, and high rates of asymptomatic infections and healthcare workers neglecting to follow guidelines limit the usefulness of syndromic management. Furthermore, though advocate d as cost-effective by the WHO, there is a cost incurred from treating uninfected people. Instead of improving this system, it is recommended that better and less expensive point of care and the development of rapid test diagnosis kits be the focus and method of diagnosis and treatment in developing nations for STI management. ^
Resumo:
This study establishes the extent and relevance of bias of population estimates of prevalence, incidence, and intensity of infection with Schistosoma mansoni caused by the relative sensitivity of stool examination techniques. The population studied was Parcelas de Boqueron in Las Piedras, Puerto Rico, where the Centers for Disease Control, had undertaken a prospective community-based study of infection with S. mansoni in 1972. During each January of the succeeding years stool specimens from this population were processed according to the modified Ritchie concentration (MRC) technique. During January 1979 additional stool specimens were collected from 30 individuals selected on the basis of their mean S. mansoni egg output during previous years. Each specimen was divided into ten 1-gm aliquots and three 42-mg aliquots. The relationship of egg counts obtained with the Kato-Katz (KK) thick smear technique as a function of the mean of ten counts obtained with the MRC technique was established by means of regression analysis. Additionally, the effect of fecal sample size and egg excretion level on technique sensitivity was evaluated during a blind assessment of single stool specimen samples, using both examination methods, from 125 residents with documented S. mansoni infections. The regression equation was: Ln KK = 2.3324 + 0.6319 Ln MRC, and the coefficient of determination (r('2)) was 0.73. The regression equation was then utilized to correct the term "m" for sample size in the expression P ((GREATERTHEQ) 1 egg) = 1 - e('-ms), which estimates the probability P of finding at least one egg as a function of the mean S. mansoni egg output "m" of the population and the effective stool sample size "s" utilized by the coprological technique. This algorithm closely approximated the observed sensitivity of the KK and MRC tests when these were utilized to blindly screen a population of known parasitologic status for infection with S. mansoni. In addition, the algorithm was utilized to adjust the apparent prevalence of infection for the degree of functional sensitivity exhibited by the diagnostic test. This permitted the estimation of true prevalence of infection and, hence, a means for correcting estimates of incidence of infection. ^
Resumo:
The purpose of this study was to design, synthesize and develop novel transporter targeting agents for image-guided therapy and drug delivery. Two novel agents, N4-guanine (N4amG) and glycopeptide (GP) were synthesized for tumor cell proliferation assessment and cancer theranostic platform, respectively. N4amG and GP were synthesized and radiolabeled with 99mTc and 68Ga. The chemical and radiochemical purities as well as radiochemical stabilities of radiolabeled N4amG and GP were tested. In vitro stability assessment showed both 99mTc-N4amG and 99mTc-GP were stable up to 6 hours, whereas 68Ga-GP was stable up to 2 hours. Cell culture studies confirmed radiolabeled N4amG and GP could penetrate the cell membrane through nucleoside transporters and amino acid transporters, respectively. Up to 40% of intracellular 99mTc-N4amG and 99mTc-GP was found within cell nucleus following 2 hours of incubation. Flow cytometry analysis revealed 99mTc-N4amG was a cell cycle S phase-specific agent. There was a significant difference of the uptake of 99mTc-GP between pre- and post- paclitaxel-treated cells, which suggests that 99mTc-GP may be useful in chemotherapy treatment monitoring. Moreover, radiolabeled N4amG and GP were tested in vivo using tumor-bearing animal models. 99mTc-N4amG showed an increase in tumor-to-muscle count density ratios up to 5 at 4 hour imaging. Both 99mTc-labeled agents showed decreased tumor uptake after paclitaxel treatment. Immunohistochemistry analysis demonstrated that the uptake of 99mTc-N4amG was correlated with Ki-67 expression. Both 99mTc-N4amG and 99mTc-GP could differentiate between tumor and inflammation in animal studies. Furthermore, 68Ga-GP was compared to 18F-FDG in rabbit PET imaging studies. 68Ga-GP had lower tumor standardized uptake values (SUV), but similar uptake dynamics, and different biodistribution compared with 18F-FDG. Finally, to demonstrate that GP can be a potential drug carrier for cancer theranostics, several drugs, including doxorubicin, were selected to be conjugated to GP. Imaging studies demonstrated that tumor uptake of GP-drug conjugates was increased as a function of time. GP-doxorubicin (GP-DOX) showed a slow-release pattern in in vitro cytotoxicity assay and exhibited anti-cancer efficacy with reduced toxicity in in vivo tumor growth delay study. In conclusion, both N4amG and GP are transporter-based targeting agents. Radiolabeled N4amG can be used for tumor cell proliferation assessment. GP is a potential agent for image-guided therapy and drug delivery.