4 resultados para Design and Analysis of Compute Experiment (DACE)
em DigitalCommons@The Texas Medical Center
Resumo:
In numerous intervention studies and education field trials, random assignment to treatment occurs in clusters rather than at the level of observation. This departure of random assignment of units may be due to logistics, political feasibility, or ecological validity. Data within the same cluster or grouping are often correlated. Application of traditional regression techniques, which assume independence between observations, to clustered data produce consistent parameter estimates. However such estimators are often inefficient as compared to methods which incorporate the clustered nature of the data into the estimation procedure (Neuhaus 1993).1 Multilevel models, also known as random effects or random components models, can be used to account for the clustering of data by estimating higher level, or group, as well as lower level, or individual variation. Designing a study, in which the unit of observation is nested within higher level groupings, requires the determination of sample sizes at each level. This study investigates the design and analysis of various sampling strategies for a 3-level repeated measures design on the parameter estimates when the outcome variable of interest follows a Poisson distribution. ^ Results study suggest that second order PQL estimation produces the least biased estimates in the 3-level multilevel Poisson model followed by first order PQL and then second and first order MQL. The MQL estimates of both fixed and random parameters are generally satisfactory when the level 2 and level 3 variation is less than 0.10. However, as the higher level error variance increases, the MQL estimates become increasingly biased. If convergence of the estimation algorithm is not obtained by PQL procedure and higher level error variance is large, the estimates may be significantly biased. In this case bias correction techniques such as bootstrapping should be considered as an alternative procedure. For larger sample sizes, those structures with 20 or more units sampled at levels with normally distributed random errors produced more stable estimates with less sampling variance than structures with an increased number of level 1 units. For small sample sizes, sampling fewer units at the level with Poisson variation produces less sampling variation, however this criterion is no longer important when sample sizes are large. ^ 1Neuhaus J (1993). “Estimation efficiency and Tests of Covariate Effects with Clustered Binary Data”. Biometrics , 49, 989–996^
Resumo:
The "EMR Tutorial" is designed to be a bilingual online physician education environment about electronic medical records. After iterative assessment and redesign, the tutorial was tested in two groups: U.S. physicians and Mexican medical students. Split-plot ANOVA revealed significantly different pre-test scores in the two groups, significant cognitive gains for the two groups overall, and no significant difference in the gains made by the two groups. Users rated the module positively on a satisfaction questionnaire.
Resumo:
Health care providers face the problem of trying to make decisions with inadequate information and also with an overload of (often contradictory) information. Physicians often choose treatment long before they know which disease is present. Indeed, uncertainty is intrinsic to the practice of medicine. Decision analysis can help physicians structure and work through a medical decision problem, and can provide reassurance that decisions are rational and consistent with the beliefs and preferences of other physicians and patients. ^ The primary purpose of this research project is to develop the theory, methods, techniques and tools necessary for designing and implementing a system to support solving medical decision problems. A case study involving “abdominal pain” serves as a prototype for implementing the system. The research, however, focuses on a generic class of problems and aims at covering theoretical as well as practical aspects of the system developed. ^ The main contributions of this research are: (1) bridging the gap between the statistical approach and the knowledge-based (expert) approach to medical decision making; (2) linking a collection of methods, techniques and tools together to allow for the design of a medical decision support system, based on a framework that involves the Analytic Network Process (ANP), the generalization of the Analytic Hierarchy Process (AHP) to dependence and feedback, for problems involving diagnosis and treatment; (3) enhancing the representation and manipulation of uncertainty in the ANP framework by incorporating group consensus weights; and (4) developing a computer program to assist in the implementation of the system. ^
Resumo:
The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.