14 resultados para Deprivation

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocular dominance (OD) plasticity is a robust paradigm for examining the functional consequences of synaptic plasticity. Previous experimental and theoretical results have shown that OD plasticity can be accounted for by known synaptic plasticity mechanisms, using the assumption that deprivation by lid suture eliminates spatial structure in the deprived channel. Here we show that in the mouse, recovery from monocular lid suture can be obtained by subsequent binocular lid suture but not by dark rearing. This poses a significant challenge to previous theoretical results. We therefore performed simulations with a natural input environment appropriate for mouse visual cortex. In contrast to previous work, we assume that lid suture causes degradation but not elimination of spatial structure, whereas dark rearing produces elimination of spatial structure. We present experimental evidence that supports this assumption, measuring responses through sutured lids in the mouse. The change in assumptions about the input environment is sufficient to account for new experimental observations, while still accounting for previous experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Researchers have historically emphasized the contribution of caspase-3 to apoptotic but not necrotic cell death, while calpain has been implicated primarily in necrosis and, to a lesser extent, in apoptosis. Activation of these proteases occurs in vivo following various CNS insults including ischemia. In addition, both necrotic and apoptotic cell death phenotypes are detected following ischemia. However, the contributions of calpain and caspase-3 to apoptotic and necrotic cell death phenotypes following CNS insults are relatively unexplored. To date, no study has examined the concurrent activation of calpain and caspase-3 in necrotic and apoptotic cell death phenotypes following any CNS insult. The present study employed oxygen-glucose deprivation (OGD) to determine the relative contributions of caspase-3 and calpain to apoptotic and necrotic cell death following OGD. Experiments characterized a model of OGD by evaluating cell viability and characterizing the cell death phenotypes following OGD in primary septo-hippocampal co-cultures. Furthermore, cell markers (NeuN and MAP2 or GFAP) assessed the effects of OGD on neuronal and astroglial viability, respectively. In addition, calpain and caspase-3 mediated proteolysis of α-spectrin was examined using Western blot techniques. Activation of these proteases in individual cells phenotypically characterized as apoptotic and necrotic was also evaluated by using antibodies specific for calpain or caspase-3 mediated breakdown products to α-spectrin. Administration of appropriate caspase-3 and calpain inhibitors also examined the effects of protease inhibition on cell death. OGD produced prominent expression of apoptotic cell death phenotypes primarily in neurons, with relatively little damage to astroglia. Although Western blot data suggested greater proteolysis of α-spectrin by calpain than caspase-3, co-activation of both proteases was usually detected in cells exhibiting apoptotic or necrotic cell death phenotypes. While inhibition of calpain and caspase-3 activity decreased LDH release following OGD, it was not clear whether this effect was also associated with a decrease in cell death and the appearance of apoptotic cell death phenotypes. These data demonstrate that both calpain and caspase-3 contribute to the expression of apoptotic cell death phenotypes following OGD, and that calpain could potentially have a larger role in the expression of apoptotic cell death than previously thought. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: High grade serous carcinoma whether ovarian, tubal or primary peritoneal, continues to be the most lethal gynecologic malignancy in the USA. Although combination chemotherapy and aggressive surgical resection has improved survival in the past decade the majority of patients still succumb to chemo-resistant disease recurrence. It has recently been reported that amplification of 5q31-5q35.3 is associated with poor prognosis in patients with high grade serous ovarian carcinoma. Although the amplicon contains over 50 genes, it is notable for the presence of several members of the fibroblast growth factor signaling axis. In particular acidic fibroblast growth factor (FGF1) has been demonstrated to be one of the driving genes in mediating the observed prognostic effect of the amplicon in ovarian cancer patients. This study seeks to further validate the prognostic value of fibroblast growth receptor 4 (FGFR4), another candidate gene of the FGF/FGFR axis located in the same amplicon. The emphasis will be delineating the role the FGF1/FGFR4 signaling axis plays in high grade serous ovarian carcinoma; and test the feasibility of targeting the FGF1/FGFR4 axis therapeutically. Materials and Methods: Spearman and Pearson correlation studies on data generated from array CGH and transcriptome profiling analyses on 51 microdissected tumor samples were used to identify genes located on chromosome 5q31-35.3 that showed significant correlation between DNA and mRNA copy numbers. Significant correlation between FGF1 and FGFR4 DNA copy numbers was further validated by qPCR analysis on DNA isolated from 51 microdissected tumor samples. Immunolocalization and quantification of FGFR4 expression were performed on paraffin embedded tissue samples from 183 cases of high-grade serous ovarian carcinoma. The expression was then correlated with clinical data to assess impact on survival. The expression of FGF1 and FGFR4 in vitro was quantified by real-time PCR and western blotting in six high-grade serous ovarian carcinoma cell lines and compared to those in human ovarian surface epithelial cells to identify overexpression. The effect of FGF1 on these cell lines after serum starvation was quantified for in vitro cellular proliferation, migration/invasion, chemoresistance and survival utilizing a combination of commercially available colorimetric, fluorometric and electrical impedance assays. FGFR4 expression was then transiently silenced via siRNA transfection and the effects on response to FGF1, cellular proliferation, and migration were quantified. To identify relevant cellular pathways involved, responsive cell lines were transduced with different transcription response elements using the Cignal-Lenti reporter system and treated with FGF1 with and without transient FGFR4 knock down. This was followed by western blot confirmation for the relevant phosphoproteins. Anti-FGF1 antibodies and FGFR trap proteins were used to attempt inhibition of FGF mediated phenotypic changes and relevant signaling in vitro. Orthotopic intraperitoneal tumors were established in nude mice using serous cell lines that have been previously transfected with luciferase expressing constructs. The mice were then treated with FGFR trap protein. Tumor progression was then followed via bioluminescent imaging. The FGFR4 gene from 52 clinical samples was sequenced to screen for mutations. Results: FGFR4 DNA and mRNA copy numbers were significantly correlated and FGFR4 DNA copy number was significantly correlated with that of FGF1. Survival of patients with high FGFR4 expressing tumors was significantly shorter that those with low expression(median survival 28 vs 55 month p< 0.001) In a multivariate cox regression model FGFR expression significantly increased risk of death (HR 2.1, p<0.001). FGFR4 expression was significantly higher in all cell lines tested compared to HOSE, OVCA432 cell line in particular had very high expression suggesting amplification. FGF1 was also particularly overexpressed in OVCA432. FGF1 significantly increased cell survival after serum deprivation in all cell lines. Transient knock down of FGFR4 caused significant reduction in cell migration and proliferation in vitro and significantly decreased the proliferative effects of FGF1 in vitro. FGFR1, FGFR4 traps and anti-FGF1 antibodies did not show activity in vitro. OVCA432 transfected with the cignal lenti reporter system revealed significant activation of MAPK, NFkB and WNT pathways, western blotting confirmed the results. Reverse phase protein array (RPPA) analysis also showed activation of MAPK, AKT, WNT pathways and down regulation of E Cadherin. FGFR trap protein significantly reduced tumor growth in vivo in an orthotopic mouse model. Conclusions: Overexpression and amplification of several members of the FGF signaling axis present on the amplicon 5q31-35.3 is a negative prognostic indicator in high grade serous ovarian carcinoma and may drive poor survival associated with that amplicon. Activation of The FGF signaling pathway leads to downstream activation of MAPK, AKT, WNT and NFkB pathways leading to a more aggressive cancer phenotype with increased tumor growth, evasion of apoptosis and increased migration and invasion. Inhibition of FGF pathway in vivo via FGFR trap protein leads to significantly decreased tumor growth in an orthotopic mouse model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The causes and contexts of food insecurity among children in the U.S. are poorly understood because the prevalence of food insecurity at the child level is low compared to the prevalence of household food insecurity. In addition, caregivers may be reluctant to admit their children may not be getting enough food due to shame or fear they might lose custody of their children. Based on our ongoing qualitative research with mothers of young children, we suggest that food security among children is related to adverse childhood experiences of caregivers. This translates into poor mental and physical health in adolescence and adulthood, which can lead to inability to secure and maintain meaningful employment that pays a living wage. In this paper we propose that researchers shift the framework for understanding food insecurity in the United States to adopt a life course approach. This demands we pay greater attention to the lifelong consequences of exposure to trauma or toxic stress—exposure to violence, rape, abuse and neglect, and housing, food, and other forms of deprivation—during childhood. We then describe three case studies of women from our ongoing study to describe a variety of toxic stress exposures and how they have an impact on a woman’s earning potential, her mental health, and attitudes toward raising children. Each woman describes her exposure to violence and deprivation as a child and adolescent, describes experiences with child hunger, and explains how her experiences have shaped her ability to nourish her children. We describe ways in which we can shift the nature of research investigations on food insecurity, and provide recommendations for policy-oriented solutions regarding income support programs, early intervention programs, child and adult mental health services, and violence prevention programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Bcr-Abl fusion oncogene which resulted from a balanced reciprocal translocation between chromosome 9 and 22, t(9;22)(q11, q34), encodes a 210 KD elevated tyrosine specific protein kinase that is found in more than 95 percent of chronic myelogenous leukemia patients (CML). Increase of level of phosphorylation of tyrosine is observed on cell cycle regulatory proteins in cells overexpressing the Bcr-Abl oncogene, which activates multiple signaling pathways. In addition, distinct signals are required for transforming susceptible fibroblast and hematopoietic cells, and the minimal signals essential for transforming hematopoietic cells are yet to be defined. In the present study, we first established a tetracycline repressible p210$\rm\sp{bcr-abl}$ expression system in a murine myeloid cell line 32D c13, which depends on IL3 to grow in the presence of tetracycline and proliferate independent of IL3 in the absence of tetracycline. Interestingly, one of these sublines does not form tumors in athymic nude mice suggesting that these cells may not be completely transformed. These cells also exhibit a dose-dependent growth and expression of p210$\rm\sp{bcr-abl}$ at varying concentrations of tetracycline in the culture. However, p210$\rm\sp{bcr-abl}$ rescues IL3 deprivation induced apoptosis in a non-dose dependent fashion. DNA genotoxic damage induced by gamma-irradiation activates c-Abl tyrosine kinase, the cellular homologue of p210$\rm\sp{bcr-abl},$ and leads to activation of p38 MAP kinase in the cells. However, in the presence of p210$\rm\sp{bcr-abl}$ the irradiation failed to activate the p38 MAP kinase as examined by an antibody against phosphorylated p38 MAP kinase. Similarly, an altered tyrosine phosphorylation of the JAK1-STAT1 pathways was identified in cells constitutively overexpressing p210$\rm\sp{bcr-abl}.$ This may provided a molecular mechanism for altered therapeutic response of CML patients to IFN-$\alpha.$^ Bcr-Abl oncoprotein has multiple functional domains which have been identified by the work of others. The Bcr tetramerization domain, which may function to stabilize the association of the Bcr-Abl with actin filaments in p210$\rm\sp{bcr-abl}$ susceptible cells, are essential for transforming both fibroblast and hematopoietic cells. We designed a transcription unit encoding first 160 amino acids polypeptide of Bcr protein to test if this polypeptide can inhibit the transforming activity of the p210$\rm\sp{bcr-abl}$ oncoprotein in the 32D c13 cells. When this vector was transfected transiently along with the p210$\rm\sp{bcr-abl}$ expression vector, it can block the transforming activity of p210$\rm\sp{bcr-abl}.$ On the other hand, the retinoblastoma tumor suppressor protein (Rb), a naturally occurring negative regulator of the c-Abl kinase, the cellular homologue of Bcr-Abl oncoprotein, binds to and inhibits the c-Abl kinase in a cell cycle dependent manner. A polypeptide obtained from the carboxyl terminal end of the retinoblastoma tumor suppressor protein, in which the nuclear localization signal was mutated, was used to inhibit the kinase activity of the p210$\rm\sp{bcr-abl}$ in the cytoplasm. This polypeptide, called Rb MC-box, and its wild type form, Rb C-box, when overexpressed in the 32D cells are mainly localized in the cytoplasm. Cotransfection of a plasmid transcription unit coding for this polypeptide and the gene for the p210$\rm\sp{bcr-abl}$ resulted in reduced plating efficiency of p210$\rm\sp{bcr-abl}$ transfected IL3 independent 32D cells. Together, these results may lead to a molecular approach to therapy of CML and an in vitro assay system to identify new targets to which an inhibitory polypeptide transcription unit may be directed. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The number of people with end-stage-renal-disease (ESRD) and living with dialysis is a growing public health concern. Most studies about the impact of ESRD on people’s lives have placed attention on the medical and clinical dimension of ESRD. Very few have given attention to the environmental and cultural context in which people with ESRD live, the adaptation that these individuals must make to adjust to living with ESRD and dialysis, or the occupations in which they engage. Additionally these studies have not focused on Mexican Americans who are disproportionately affected by this illness and condition. This qualitative study explores the needs, perceptions, and issues facing Mexican Americans with ESRD living with dialysis as well as their families. Participants were residents of the Lower Rio Grande Valley and included individuals with ESRD, family members, and the healthcare providers who give care to them. The Health Belief Model and Lifestyle Performance Model served as the theoretical frameworks. The study also explored the daily occupations of this population. ^ In-depth interviews were conducted on 15 Mexican Americans with ESRD living with dialysis, 15 family members, and six dialysis healthcare providers. A video documentary of the day-to-day life of three individuals with ESRD and their families was produced. Such data do not currently exist and will greatly enhance the understanding of the human experience of living with ESRD. The results suggest that a collective effort of the family unit is at work to deal with the demands of dialysis. An imbalance and disharmony exist among the occupational activities, which creates occupational deprivation and disruption for both the individuals and family members. Implications for practice and recommendations for further research are described. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose of the study. The purpose was to determine if sleep deprivation in hospitalized older adults predicts the development of delirium, and if sleep is predicted by nighttime light and sound levels. ^ Method. This observational feasibility study enrolled 54 adults ≥70 years of age (mean age 79, range 70–94) who were negative for delirium. The sample was monitored for sleep via wrist actigraphy, and light and sound levels were monitored from 2200 to 0700 the first night of hospitalization. The Richards Campbell Sleep Questionnaire (RCSQ) was administered to measure subjective sleep satisfaction. Subjects were assessed for delirium daily using the Confusion Assessment Method. ^ Conclusions. Of 50 subjects completing the study, two (4%) developed delirium. Mean nighttime sleep was 225 minutes (± 137) with frequent awakenings (13 ± 6) Light levels were elevated episodically (mean intense light = 64 lux, lasting 1¾ hours); median sound levels [49.65 dB(A)] exceeded WHO recommendations [35 dB(A)]. Neither median sound (r = -.63, p = 67) nor mean light levels (r = -.104, p = .47) significantly correlated with sleep. Mean RCSQ was 50.7 ± 24 and showed a moderate correlation with nighttime sleep minutes (r = .577, p .000). Power analysis determined that 294 subjects will be required to determine if nighttime sleep minutes predict delirium, and 182 subjects will be required to determine if sound and light levels predict nighttime sleep minutes.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer (CaP) is the most diagnosed non-cutaneous malignancy and the second leading cause of cancer mortality among United States males. Major racial disparities in incidence, survival, as well as treatment persist. The mortality is three times higher among African Americans (AAs) compared with Caucasians. Androgen carcinogenesis has been persistently implicated but results are inconsistent; and hormone manipulation has been the main stay of treatment for metastatic disease, supportive of the androgen carcinogenesis. The survival disadvantage of AAs has been attributed to the differences in socioeconomic factors (SES), tumor stage, and treatment. We hypostasized that HT prolongs survival in CaP and that the racial disparities in survival is influenced by variation in HT and primary therapies as well as SES. To address these overall hypothesis, we first utilized a random-effect meta-analytic design to examine evidence from randomized trials on the efficacy of androgen deprivation therapy in localized and metastatic disease, and assessed, using Cox proportional hazards models, the effectiveness of HT in prolonging survival in a large community-based cohort of older males diagnosed with local/regional CaP. Further we examined the role of HT and primary therapies on the racial disparities in CaP survival. The results indicated that adjuvant HT compared with standard care alone is efficacious in improving overall survival, whereas HT has no significant benefit in the real world experience in increasing the overall survival of older males in the community treated for local/regional disease. Further, racial differences in survival persist and were explained to some extent by the differences in the primary therapies (radical prostatectomy, radiation and watchful waiting) and largely by SES. Therefore, given the increased used of hormonal therapy and the cost-effectiveness today, more RCTs are needed to assess whether or not survival prolongation translates to improved quality of life, and to answer the research question on whether or not the decreased use of radical prostatectomy by AAs is driven by the Clinicians bias or AAs's preference of conservative therapy and to encourage AAs to seek curative therapies, thus narrowing to some degree the persistent mortality disparities between AAs and Caucasians. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the administration-time-dependent effects of a stimulant (Dexedrine 5-mg), a sleep-inducer (Halcion 0.25-mg) and placebo (control) on human performance. The investigation was conducted on 12 diurnally active (0700-2300) male adults (23-38 yrs) using a double-blind, randomized sixway-crossover three-treatment, two-timepoint (0830 vs 2030) design. Performance tests were conducted hourly during sleepless 13-hour studies using a computer generated, controlled and scored multi-task cognitive performance assessment battery (PAB) developed at the Walter Reed Army Institute of Research. Specific tests were Simple and Choice Reaction Time, Serial Addition/Subtraction, Spatial Orientation, Logical Reasoning, Time Estimation, Response Timing and the Stanford Sleepiness Scale. The major index of performance was "Throughput", a combined measure of speed and accuracy.^ For the Placebo condition, Single and Group Cosinor Analysis documented circadian rhythms in cognitive performance for the majority of tests, both for individuals and for the group. Performance was best around 1830-2030 and most variable around 0530-0700 when sleepiness was greatest (0300).^ Morning Dexedrine dosing marginally enhanced performance an average of 3% with reference to the corresponding in time control level. Dexedrine AM also increased alertness by 10% over the AM control. Dexedrine PM failed to improve performance with reference to the corresponding PM control baseline. With regard to AM and PM Dexedrine administrations, AM performance was 6% better with subjects 25% more alert.^ Morning Halcion administration caused a 7% performance decrement and 16% increase in sleepiness and a 13% decrement and 10% increase in sleepiness when administered in the evening compared to corresponding in time control data. Performance was 9% worse and sleepiness 24% greater after evening versus morning Halcion administration.^ These results suggest that for evening Halcion dosing, the overnight sleep deprivation occurring in coincidence with the nadir in performance due to circadian rhythmicity together with the CNS depressant effects combine to produce performance degradation. For Dexedrine, morning administration resulted in only marginal performance enhancement; Dexedrine in the evening was less effective, suggesting the 5-mg dose level may be too low to counteract the partial sleep deprivation and nocturnal nadir in performance. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degradation of proteins by the ubiquitin proteasome system is essential for cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). During nutrient deprivation, AMPK is activated and intracellular proteolysis is enhanced through the ubiquitin proteasome system (UPS). Whether AMPK plays a role in protein degradation through the UPS in the heart is not known. Here I present data in support of the hypothesis that AMPK transcriptionally regulates key players in the UPS, which, under extreme conditions can be detrimental to the heart. The ubiquitin ligases MAFbx /Atrogin-1 and MuRF1, key regulators of protein degradation, and AMPK activity are increased during nutrient deprivation. Pharmacologic and genetic activation of AMPK is sufficient for the induction of MAFbx/Atrogin-1 and MuRF1 in cardiomyocytes and in the heart in vivo. Comprehensive experiments demonstrate that the molecular mechanism by which AMPK regulates MuRF1 expression is through the transcription factor myocyte enhancer factor 2 (MEF2), which is involved in stress response and cardiomyocyte remodeling. MuRF1 is required for AMPK-mediated protein degradation through the UPS in cardiomyocytes. Consequently, the absence of MuRF1 during chronic fasting preserves cardiac function, possibly by limiting degradation of critical metabolic enzymes. Furthermore, during cardiac hypertrophy, chronic activation of AMPK also leads to cardiac dysfunction, possibly through enhanced protein degradation and metabolic dysregulation. Collectively, my findings demonstrate that AMPK regulates expression of ubiquitin ligases which are required for UPS-mediated protein degradation in the heart. Based on these results, I propose that specific metabolic signals may serve as modulators of intracellular protein degradation in the heart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degradation of proteins by the ubiquitin proteasome system is essential for cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). During nutrient deprivation, AMPK is activated and intracellular proteolysis is enhanced through the ubiquitin proteasome system (UPS). Whether AMPK plays a role in protein degradation through the UPS in the heart is not known. Here I present data in support of the hypothesis that AMPK transcriptionally regulates key players in the UPS, which, under extreme conditions can be detrimental to the heart. The ubiquitin ligases MAFbx /Atrogin-1 and MuRF1, key regulators of protein degradation, and AMPK activity are increased during nutrient deprivation. Pharmacologic and genetic activation of AMPK is sufficient for the induction of MAFbx/Atrogin-1 and MuRF1 in cardiomyocytes and in the heart in vivo. Comprehensive experiments demonstrate that the molecular mechanism by which AMPK regulates MuRF1 expression is through the transcription factor myocyte enhancer factor 2 (MEF2), which is involved in stress response and cardiomyocyte remodeling. MuRF1 is required for AMPK-mediated protein degradation through the UPS in cardiomyocytes. Consequently, the absence of MuRF1 during chronic fasting preserves cardiac function, possibly by limiting degradation of critical metabolic enzymes. Furthermore, during cardiac hypertrophy, chronic activation of AMPK also leads to cardiac dysfunction, possibly through enhanced protein degradation and metabolic dysregulation. Collectively, my findings demonstrate that AMPK regulates expression of ubiquitin ligases which are required for UPS-mediated protein degradation in the heart. Based on these results, I propose that specific metabolic signals may serve as modulators of intracellular protein degradation in the heart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this cross-sectional study was to examine the relationship of provincial economic development indices with incidences of child injury mortality in Thailand from 1999 - 2001. All injury deaths among children age 1-14 years were included. The independent variables included gross provincial product per capita (GPP/c), poverty and inequality indices, material and social deprivation indices, population in rural/ urban areas, and migration. Due to multicollinearity of such variables, the 76 provinces were categorized by GPP/c quartile, and means of overall injury, drowning, and transport-related mortality rates were compared among quartile groups. Spearman’s rho correlation between GPP/c and injury mortality rates was also performed. Finally, factor analysis was employed to create a set of factors to be treated as uncorrelated variables and stepwise multiple regression was carried out for the effects of the factors on injury mortality rates. A significant direct relationship was observed between GPP/c and overall injury mortality among children age 1-4 years, and 10-14 year-olds of both genders. Drowning was the main cause of this relationship among children age 1-4 years, and transport-related injury was the principle cause among children age 10-14 years. Conversely, provinces with lower GPP/c experienced higher injury mortality rates among school-age children 5-9 years old for both genders, mostly due to drowning. Factor analysis, and multiple regression results confirmed the relationships between economic development and injury mortality rates. These findings revealed that economic development had an adverse impact on injury-related mortality among children 1 to 4 and 10 to14 in Thailand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autophagy is an evolutionarily conserved process that functions to maintain homeostasis and provides energy during nutrient deprivation and environmental stresses for the survival of cells by delivering cytoplasmic contents to the lysosomes for recycling and energy generation. Dysregulation of this process has been linked to human diseases including immune disorders, neurodegenerative muscular diseases and cancer. Autophagy is a double edged sword in that it has both pro-survival and pro-death roles in cancer cells. Its cancer suppressive roles include the clearance of damaged organelles, which could otherwise lead to inflammation and therefore promote tumorigenesis. In its pro-survival role, autophagy allows cancer cells to overcome cytotoxic stresses generated the cancer environment or cancer treatments such as chemotherapy and evade cell death. A better understanding of how drugs that perturb autophagy affect cancer cell signaling is of critical importance toimprove the cancer treatment arsenal. In order to gain insights in the relationship between autophagy and drug treatments, we conducted a high-throughput drug screen to identify autophagy modulators. Our high-throughput screen utilized image based fluorescent microscopy for single cell analysis to identify chemical perturbants of the autophagic process. Phenothiazines emerged as the largest family of drugs that alter the autophagic process by increasing LC3-II punctae levels in different cancer cell lines. In addition, we observed multiple biological effects in cancer cells treated with phenothiazines. Those antitumorigenic effects include decreased cell migration, cell viability, and ATP production along with abortive autophagy. Our studies highlight the potential role of phenothiazines as agents for combinational therapy with other chemotherapeutic agents in the treatment of different cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adenovirus type 5 E1A (abbreviated E1A) has previously been known as an immortalization oncogene because E1A is required for transforming oncogenes, such as ras and E1B, to transform cells in primary cultures. However, E1A has also been shown to downregulate the overexpression of the Her-2/neu oncogene, resulting in suppression of transformation and tumorigenesis induced by that oncogene. In addition, E1A is able to promote apoptosis induced by anticancer drugs, irradiation, and serum deprivation. Many tyrosine kinases, such as the EGF receptor, Her-2/Neu, Src, and Axl are known to play a role in oncogenic signals in transformed cells. To study the mechanism underlying the E1A-mediated tumor-suppressing function, we exploited a modified tyrosine kinase profile assay (Proc. Natl. Acad. Sci, 93, 5958–5962, 1996) to identify potential tyrosine kinases regulated by E1A. RT-PCR products were synthesized with two degenerate primers derived from the conserved motifs of various tyrosine kinases. A tyrosine kinase downregulated by E1A was identified as Axl by analyzing the Alu I-digested RT-PCR products. We isolated the DNA fragment of interest, and found that E1A negatively regulated the expression of the transforming receptor tyrosine kinase Axl at the transcriptional level. To study whether downregulation of the Axl receptor is involved in E1A-mediated growth suppression, we transfected axl cDNA into E1A-expressing cells (ip1-E1A) to establish cells that overexpressed Axl (ip1-E1A-Axl). The Axl ligand Gas6 triggered a greater mitogenic effect in these ip1-E1A-Axl cells than in the control cells ip1-E1A and protected the Axl-expressing cells from serum deprivation-induced apoptosis. Further study showed that Akt is required for Axl-Gas6 signaling to prevent ip1-E1A-Axl cells from serum deprivation-induced apoptosis. These results indicate that downregulation of the Axl receptor by E1A is involved in E1A-mediated growth suppression and E1A-induced apoptosis, and thereby contributes to E1A's anti-tumor activities. ^