7 resultados para Deficiency
em DigitalCommons@The Texas Medical Center
Resumo:
Isolated cerebral folate deficiency was detected in a 13-year-old girl with cognitive and motor difficulties and juvenile rheumatoid arthritis. Her serum contains autoantibodies that block membrane-bound folate receptors that are on the choroid plexus and diminish the uptake of folate into the spinal fluid. Whereas her serum folate exceeded 21 ng/mL, her spinal fluid contained 3.2 ng/mL of 5-methyltetrahydrofolate as a consequence of the autoantibodies diminishing the uptake of this folate.
Resumo:
Deficiency of the enzyme adenosine deaminase (ADA) results in severe lymphopenia in humans. Mice with an inactivating mutation in the ADA gene also exhibit profound lymphopenia, as well as pulmonary insufficiency and ribcage abnormalities. In fact, the mouse model has a phenotype that is remarkably similar to that of the human disease, making the mice valuable tools for unraveling the mechanism of lymphocyte destruction in absence of this housekeeping gene. T cell deficiency in ADA deficiency has been extensively studied by others, revealing a block in early thymocyte development. In contrast, our studies revealed that early B cell development in the bone marrow is normal. ADA-deficient mice, however, exhibit profound defects in germinal center formation, preventing antigen-dependent B cell maturation in the spleen. ADA-deficient spleen B cells display significant defects in proliferation and activation signaling, and produce more IgM than their normal counterparts, suggesting that extrafollicular plasmablasts are overrepresented. B cells from ADA-deficient mouse spleens undergo apoptosis more readily than those from normal mouse spleens. Levels of ADA's substrates, adenosine and 2′-deoxyadenosine, are elevated in both bone marrow and spleen in ADA-deficient mice. S ′-adenosyihomoeysteine hydrolase (SAH hydrolase) activity is significantly inhibited in both locales, as well. dATP levels, though, are only elevated in spleen, where B cell development is impaired, and not in bone marrow, where B cell ontogeny is normal. This finding points to dATP as the causative agent of lymphocyte death in ADA deficiency. ADA deficiency results in inhibition of the enzyme ribonucleotide reductase, thereby depleting nucleoside pools needed for DNA repair. Another mouse model that lacks a functional gene encoding a protein involved in DNA repair and/or cell cycle checkpoint regulation, p53-binding protein 1, exhibits blocks in T and B cell development that are similar to those seen in ADA-deficient mice. Unraveling the mechanisms of lymphocyte destruction in ADA deficiency may further understanding of lymphocyte biology, facilitate better chemotherapeutic treatment for lymphoproliferative diseases, and improve gene and enzyme therapy regimens attempted for ADA deficiency. ^
Resumo:
Vitamin D is essential in maintaining the bone health and Calcium homeostasis in the body. These actions are mediated through the Vitamin D receptors (VDR) present in cells through which the activated vitamin D acts [1]. In the past, it was known that these receptors existed in the intestine and bone cell. However, recent discovery of VDR in other tissues as well, has broadened the action of Vitamin D and increased its adequate intake [1].^ In the past, Vitamin D deficiency was most common among institutionalized, elderly patients and children and thought to be extinct in the healthy population. However, recent evidence has shown that, prevalence of vitamin D deficiency is increasing into an epidemic status in the overall population of the United States, including the healthy individuals [2-3]. The increased daily-recommended requirement and other multiple factors are responsible for the re-emergence of this epidemic [4-5]. Some of these factors could be used to control the epidemic. Studies have also shown the association between vitamin D deficiency and increased risk for developing chronic diseases such as diabetes, hypertension, multiple sclerosis, arthritis, and some fatal cancers like prostate, colon and breast cancers [1, 4, 6-14]. This issue results in increased disease burden, morbidity and mortality in the community [15-20].^ Methods: The literature search was conducted using the University of Texas Health Science Center at Houston (UTHSC) and University of Texas Southwestern Medical Center (UTSW) online library. The key search terms used are “vitamin D deficiency And prevalence Or epidemiology”, “vitamin D deficiency And implication And public health” using PubMed and Mesh database and “vitamin D deficiency” using systematic reviews. The search is limited to Humans and the English language. The articles considered for the review are limited to Healthy US population to avoid health conditions that predispose the population to vitamin D deficiency. Only US population is considered to narrow down the study.^ Results: There is an increased prevalence of low levels of Vitamin D levels below the normal range in the US population regardless of age and health status. Vitamin D deficiency is also associated with increased risk of chronic illnesses and fatal cancers.^ Conclusion: This increased prevalence and the association of the deficiency with increased all-cause mortality has increased the economic burden and compromised the quality of life among the population. This necessitates the health care providers to routinely screen their patients for the Vitamin D status and counsel them to avoid the harmful effects of the Vitamin D deficiency. ^
Resumo:
This dissertation develops and tests through path analysis a theoretical model to explain how socioeconomic, socioenvironmental, and biologic risk factors simultaneously influence each other to further produce short-term, depressed growth in preschoolers. Three areas of risk factors were identified: child's proximal environment, maturational stage, and biological vulnerability. The theoretical model represented both the conceptual framework and the nature and direction of the hypotheses. Original research completed in 1978-80 and in 1982 provided the background data. It was analyzed first by nested-analysis of variance, followed by path analysis. The study provided evidence of mild iron deficiency and gastrointestinal symptomatology in the etiology of depressed, short-term weight gain. Also, there was evidence suggesting that family resources for material and social survival significantly contribute to the variability of short-term, age-adjusted growth velocity. These results challenge current views of unifocal intervention, whether for prevention or control. For policy formulations, though, the mechanisms underlying any set of interlaced relationships must be decoded. Theoretical formulations here proposed should be reassessed under a more extensive research design. It is suggested that studies should be undertaken where social changes are actually in progress; otherwise, nutritional epidemiology in developing countries operates somewhere between social reality and research concepts, with little grasp of its real potential. The study stresses that there is a connection between substantive theory, empirical observation, and policy issues. ^
Resumo:
The objectives of this study were to determine the nature of the relationship between severity of iron deficiency anemia, response to iron treatment, respiratory and gastrointestinal illness and weight change. Seventy-five pre-school children from rural Guatemala received daily oral iron therapy for an eleven week period, and were classified into one of three groups having different degrees of iron deficiency anemia. Anthropometric and biochemical data were collected prior and after iron treatment; morbidity data were collected throughout the period of treatment. The outcome variables were percentage weight change, percentage of total days ill with any type of symptom, percentage of total days ill with gastrointestinal symptoms, percentage of total days ill with respiratory symptoms, percentage of total days ill with combination syndrome symptoms. Age, sex and socio-economic status, were independent of any of the independent or outcome variables used. On the other hand, the level of hemoglobin covaried with the height of the children, the smallest children were the most severely anemic. The relationships between hemoglobin levels and weight change, frequency of morbidity (gastrointestinal, respiratory and combination syndrome) and total number of days ill with any symptomatology were investigated. No statistical significance was found in these analyses except when contrasting children with normal hemoglobin levels to iron deficient children, where the findings indicated the normal children experienced more gastrointestinal morbidity. The same relationship were again analyzed but including delta hemoglobin as covariate in the analysis, this latter one was found to be significant at 7% when the percentage of days ill from gastrointestinal morbidity was tested against the hemoglobin groups. The relationship found indicates that, all other covariates accounted for, the percentage of days ill from gastrointestinal morbidity will decrease approximately 1% for each 1% increase in delta of hemoglobin. ^
Resumo:
Vascular Ehlers-Danlos syndrome is a heritable disease of connective tissue caused by mutations in COL3A1, conferring a tissue deficiency of type III collagen. Cutaneous wounds heal poorly in these patients, and they are susceptible to spontaneous and catastrophic rupture of expansible hollow organs like the gut, uterus, and medium-sized to large arteries, which leads to premature death. Although the predisposition for organ rupture is often attributed to inherent tissue fragility, investigation of arteries from a haploinsufficient Col3a1 mouse model (Col3a1+/-) demonstrates that mutant arteries withstand even supraphysiologic pressures comparably to wild-type vessels. We hypothesize that injury that elicits occlusive thrombi instead unmasks defective thrombus resolution resulting from impaired production of type III collagen, which causes deranged remodeling of matrix, persistent inflammation, and dysregulated behavior by resident myofibroblasts, culminating in the development of penetrating neovascular channels that disrupt the mechanical integrity of the arterial wall. Vascular injury and thrombus formation following ligation of the carotid artery reveals an abnormal persistence and elevated burden of occlusive thrombi at 21 post-operative days in vessels from Col3a1+/- mice, as opposed to near complete resolution and formation of a patent and mature neointima in wild-type mice. At only 14 days, both groups harbor comparable burdens of resolving thrombi, but wild-type mice increase production of type III collagen in actively resolving tissues, while mutant mice do not. Rather, thrombi in mutant mice contain higher burdens of macrophages and proliferative myofibroblasts, which persist through 21 days while wild-type thrombi, inflammatory cells, and proliferation all regress. At the same time that increased macrophage burdens were observed at 14 and 21 days post ligation, the medial layer of mutant arterial walls concurrently harbored a significantly higher incidence of penetrating neovessels compared with those in wild-type mice. To assess whether limited type III collagen production alters myofibroblast behavior, fibroblasts from vEDS patients with COL3A1 missense mutations were seeded into three-dimensional fibrin gel constructs and stimulated with transforming growth factor-β1 to initiate myofibroblast differentiation. Although early signaling events occur similarly in all cell lines, late extracellular matrix- and mechanically-regulated events like transcriptional upregulation of type I and type III collagen secretion are delayed in mutant cultures, while transcription of genes encoding intracellular contractile machinery is increased. Sophisticated imaging of collagen synthesized de novo by resident myofibroblasts visualizes complex matrix reorganization by control cells but only meager remodeling by COL3A1 mutant cells, concordant with their compensatory contraction to maintain tension in the matrix. Finally, administration of immunosuppressive rapamycin to mice following carotid ligation sufficiently halts the initial inflammatory phase of thrombus resolution and fully prevents both myofibroblast migration into the thrombus and the differential development of neovessels between mutant and wild-type mice, suggesting that pathological defects in mutant arteries develop secondarily to myofibroblast dysfunction and chronic inflammatory stimulation, rather than as a manifestation of tissue fragility. Together these data establish evidence that pathological defects in the vessel wall architecture develop in mutant arteries as sequelae to abnormal healing and remodeling responses activated by arterial injury. Thus, these data support the hypothesis that events threatening the integrity of type III collagen-deficient vessels develop not as a result of inherent tissue weakness and fragility at baseline but instead as an episodic byproduct of abnormally persistent granulation tissue and fibroproliferative intravascular remodeling.