2 resultados para Data compression. Seismic data. Mathematical Transforms. Huffman codification
em DigitalCommons@The Texas Medical Center
Resumo:
(1) A mathematical theory for computing the probabilities of various nucleotide configurations is developed, and the probability of obtaining the correct phylogenetic tree (model tree) from sequence data is evaluated for six phylogenetic tree-making methods (UPGMA, distance Wagner method, transformed distance method, Fitch-Margoliash's method, maximum parsimony method, and compatibility method). The number of nucleotides (m*) necessary to obtain the correct tree with a probability of 95% is estimated with special reference to the human, chimpanzee, and gorilla divergence. m* is at least 4,200, but the availability of outgroup species greatly reduces m* for all methods except UPGMA. m* increases if transitions occur more frequently than transversions as in the case of mitochondrial DNA. (2) A new tree-making method called the neighbor-joining method is proposed. This method is applicable either for distance data or character state data. Computer simulation has shown that the neighbor-joining method is generally better than UPGMA, Farris' method, Li's method, and modified Farris method on recovering the true topology when distance data are used. A related method, the simultaneous partitioning method, is also discussed. (3) The maximum likelihood (ML) method for phylogeny reconstruction under the assumption of both constant and varying evolutionary rates is studied, and a new algorithm for obtaining the ML tree is presented. This method gives a tree similar to that obtained by UPGMA when constant evolutionary rate is assumed, whereas it gives a tree similar to that obtained by the maximum parsimony tree and the neighbor-joining method when varying evolutionary rate is assumed. ^
Resumo:
Every x-ray attenuation curve inherently contains all the information necessary to extract the complete energy spectrum of a beam. To date, attempts to obtain accurate spectral information from attenuation data have been inadequate.^ This investigation presents a mathematical pair model, grounded in physical reality by the Laplace Transformation, to describe the attenuation of a photon beam and the corresponding bremsstrahlung spectral distribution. In addition the Laplace model has been mathematically extended to include characteristic radiation in a physically meaningful way. A method to determine the fraction of characteristic radiation in any diagnostic x-ray beam was introduced for use with the extended model.^ This work has examined the reconstructive capability of the Laplace pair model for a photon beam range of from 50 kVp to 25 MV, using both theoretical and experimental methods.^ In the diagnostic region, excellent agreement between a wide variety of experimental spectra and those reconstructed with the Laplace model was obtained when the atomic composition of the attenuators was accurately known. The model successfully reproduced a 2 MV spectrum but demonstrated difficulty in accurately reconstructing orthovoltage and 6 MV spectra. The 25 MV spectrum was successfully reconstructed although poor agreement with the spectrum obtained by Levy was found.^ The analysis of errors, performed with diagnostic energy data, demonstrated the relative insensitivity of the model to typical experimental errors and confirmed that the model can be successfully used to theoretically derive accurate spectral information from experimental attenuation data. ^