4 resultados para DNA vaccine delivery

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new class of water-soluble C60 transfecting agents has been prepared using Hirsch-Bingel chemistry and assessed for their ability to act as gene-delivery vectors in vitro. In an effort to elucidate the relationship between the hydrophobicity of the fullerene core, the hydrophilicity of the water-solubilizing groups, and the overall charge state of the C60 vectors in gene delivery and expression, several different C60 derivatives were synthesized to yield either positively charged, negatively charged, or neutral chemical functionalities under physiological conditions. These fullerene derivatives were then tested for their ability to transfect cells grown in culture with DNA carrying the green fluorescent protein (GFP) reporter gene. Statistically significant expression of GFP was observed for all forms of the C60 derivatives when used as DNA vectors and compared to the ability of naked DNA alone to transfect cells. However, efficient in vitro transfection was only achieved with the two positively charged C60 derivatives, namely, an octa-amino derivatized C60 and a dodeca-amino derivatized C60 vector. All C60 vectors showed an increase in toxicity in a dose-dependent manner. Increased levels of cellular toxicity were observed for positively charged C60 vectors relative to the negatively charged and neutral vectors. Structural analyses using dynamic light scattering and optical microscopy offered further insights into possible correlations between the various derivatized C60 compounds, the C60 vector/DNA complexes, their physical attributes (aggregation, charge) and their transfection efficiencies. Recently, similar Gd@C60-based compounds have demonstrated potential as advanced contrast agents for magnetic resonance imaging (MRI). Thus, the successful demonstration of intracellular DNA uptake, intracellular transport, and gene expression from DNA using C60 vectors suggests the possibility of developing analogous Gd@C60-based vectors to serve simultaneously as both therapeutic and diagnostic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Helicobacter pylori, which colonizes the stomach and causes the most common chronic infection in man, is associated with peptic ulceration, gastric carcinoma and gastric lymphoma. Studies in animals demonstrated that mucosal immunization could induce immune response against H. pylori and prevent H. pylori infection only if powerful mucosal adjuvants such as cholera toxin (CT) or heat-labile toxin of E. coli (LT) were used along with an H. pylori protein antigen. Adjuvants such as CT or LT cannot be used for humans because of their toxicity. Finding non-toxic alternative adjuvants/immunomodulators or immunization strategies that eliminates the use of adjuvants is critical for the development of efficacious human Helicobacter vaccines. We investigated whether several new adjuvants such as Muramyl Tripeptide Phosphatidylethonolamine (MTP-PE), QS21 (a Quil A derivative), Monophosphoryl lipid A (MPL) or heat shock proteins (HSP) of Mycobacterium tuberculosis could be feasible to develop a safe and effective mucosal vaccine against H. pylori using a murine model. C57/BL6 mice were immunized with liposomes incorporating each adjuvant along with urease, a major antigenic protein of H. pylori, to test their mucosal effectiveness. Since DNA vaccination eliminates both the use of adjuvants and antigens we also investigated whether immunization with plasmid DNA encoding urease could induce protective immunity to H. pylori infection in the same murine model. We found that oral vaccination with liposomal MTP-PE (6.7 m g) and urease, (100 m g) induced antigen-specific systemic and mucosal immune response and protected mice against H. pylori challenge when compared to control groups. Parenteral and mucosal immunizations with as little as 20 m g naked or formulated DNA encoding urease induced systemic and mucosal immune response against urease and partially protected mice against H. pylori infection. DNA vaccination provided long-lasting immunity and serum anti-urease IgG antibodies were elevated for up to 12 months. No toxicity was detected after immunizations with either liposomal MTP-PE and urease or plasmid DNA and both were well tolerated. We conclude that immunization liposomes containing MTP-PE and urease is a promising strategy deserving further investigation and may be considered for humans. DNA vaccination could be used to prime immune response prior to oral protein vaccination and may reduce the dose of protein and adjuvant needed to achieve protective immunity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Group B Streptococcus (GBS) is a leading cause of life-threatening infection in neonates and young infants, pregnant women, and non-pregnant adults with underlying medical conditions. Immunization has theoretical potential to prevent significant morbidity and mortality from GBS disease. Alpha C protein (α C), found in 70% of non-type III capsule polysaccharide group B Streptococcus, elicits antibodies protective against α C-expressing strains in experimental animals and is an appealing carrier for a GBS conjugate vaccine. We determined whether natural exposure to α C elicits antibodies in women and if high maternal α C-specific serum antibody at delivery is associated with protection against neonatal disease. An ELISA was designed to measure α C-specific IgM and IgG in human sera. A case-control design (1:3 ratio) was used to match α C-expressing GBS colonized and non-colonized women by age and compare quantified serum α C-specific IgM and IgG. Sera also were analyzed from bacteremic neonates and their mothers and from women with invasive GBS disease. Antibody concentrations were compared using t-tests on log-transformed data. Geometric mean concentrations of α C-specific IgM and IgG were similar in sera from 58 α C strain colonized and 174 age-matched non-colonized women (IgG 245 and 313 ng/ml; IgM 257 and 229 ng/ml, respectively). Delivery sera from mothers of 42 neonates with GBS α C sepsis had similar concentrations of α C-specific IgM (245 ng/ml) and IgG (371 ng/ml), but acute sera from 13 women with invasive α C-expressing GBS infection had significantly higher concentrations (IgM 383 and IgG 476 ng/ml [p=0.036 and 0.038, respectively]). Convalescent sera from 5 of these women 16-49 days later had high α C-specific IgM and IgG concentrations (1355 and 4173 ng/ml, respectively). In vitro killing of α C-expressing GBS correlated with total α C-specific antibody concentration. Invasive disease but not colonization elicits α C-specific IgM and IgG in adults. Whether α C-specific IgG induced by vaccine would protect against disease in neonates merits further investigation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to influenza places pregnant women at risk for pneumonia and their fetus at risk for premature delivery or fatal stillbirth secondary to maternal hypoxia. Immunization rates are low among pregnant women. Influenza vaccine specific-health belief model constructs, such as cue to action messages from the health care professionals, may increase acceptance of the vaccine and improve immunization rates. A systematic review was conducted to evaluate the impact of physician recommendation upon acceptance of the influenza vaccine by pregnant women. Pregnant women were more likely to accept the influenza vaccine if they received a recommendation from their physician. These women were also more likely to accept the vaccine if they thought the vaccine protected mother and fetus against adverse effects of influenza and were less likely to accept the vaccine if they were concerned about side effects or risk to the fetus from the vaccine.^