96 resultados para DNA binding ligand

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed a novel combinatorial method termed restriction endonuclease protection selection and amplification (REPSA) to identify consensus binding sites of DNA-binding ligands. REPSA uses a unique enzymatic selection based on the inhibition of cleavage by a type IIS restriction endonuclease, an enzyme that cleaves DNA at a site distal from its recognition sequence. Sequences bound by a ligand are protected from cleavage while unprotected sequences are cleaved. This enzymatic selection occurs in solution under mild conditions and is dependant only on the DNA-binding ability of the ligand. Thus, REPSA is useful for a broad range of ligands including all classes of DNA-binding ligands, weakly binding ligands, mixed populations of ligands, and unknown ligands. Here I describe REPSA and the application of this method to select the consensus DNA-binding sequences of three representative DNA-binding ligands; a nucleic acid (triplex-forming single-stranded DNA), a protein (the TATA-binding protein), and a small molecule (Distamycin A). These studies generated new information regarding the specificity of these ligands in addition to establishing their DNA-binding sequences. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The LIM domain-binding protein Ldb1 is an essential cofactor of LIM-homeodomain (LIM-HD) and LIM-only (LMO) proteins in development. The stoichiometry of Ldb1, LIM-HD, and LMO proteins is tightly controlled in the cell and is likely a critical determinant of their biological actions. Single-stranded DNA-binding proteins (SSBPs) were recently shown to interact with Ldb1 and are also important in developmental programs. We establish here that two mammalian SSBPs, SSBP2 and SSBP3, contribute to an erythroid DNA-binding complex that contains the transcription factors Tal1 and GATA-1, the LIM domain protein Lmo2, and Ldb1 and binds a bipartite E-box-GATA DNA sequence motif. In addition, SSBP2 was found to augment transcription of the Protein 4.2 (P4.2) gene, a direct target of the E-box-GATA-binding complex, in an Ldb1-dependent manner and to increase endogenous Ldb1 and Lmo2 protein levels, E-box-GATA DNA-binding activity, and P4.2 and beta-globin expression in erythroid progenitors. Finally, SSBP2 was demonstrated to inhibit Ldb1 and Lmo2 interaction with the E3 ubiquitin ligase RLIM, prevent RLIM-mediated Ldb1 ubiquitination, and protect Ldb1 and Lmo2 from proteasomal degradation. These results define a novel biochemical function for SSBPs in regulating the abundance of LIM domain and LIM domain-binding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many eukaryotic promoters contain a CCAAT element at a site close ($-$80 to $-$120) to the transcription initiation site. CBF (CCAAT Binding Factor), also called NF-Y and CP1, was initially identified as a transcription factor binding to such sites in the promoters of the Type I collagen, albumin and MHC class II genes. CBF is a heteromeric transcription factor and purification and cloning of two of the subunits, CBF-A and CBF-B revealed that it was evolutionarily conserved with striking sequence identities with the yeast polypeptides HAP3 and HAP2, which are components of a CCAAT binding factor in yeast. Recombinant CBF-A and CBF-B however failed to bind to DNA containing CCAAT sequences. Biochemical experiments led to the identification of a third subunit, CBF-C which co-purified with CBF-A and complemented the DNA binding of recombinant CBF-A and CBF-B. We have recently isolated CBF-C cDNAs and have shown that bacterially expressed purified CBF-C binds to CCAAT containing DNA in the presence of recombinant CBF-A and CBF-B. Our experiments also show that a single molecule each of all the three subunits are present in the protein-DNA complex. Interestingly, CBF-C is also evolutionarily conserved and the conserved domain between CBF-C and its yeast homolog HAP5 is sufficient for CBF-C activity. Using GST-pulldown experiments we have demonstrated the existence of protein-protein interaction between CBF-A and CBF-C in the absence of CBF-B and DNA. CBF-B on other hand, requires both CBF-A and CBF-C to form a ternary complex which then binds to DNA. Mutational studies of CBF-A have revealed different domains of the protein which are involved in CBF-C interaction and CBF-B interaction. In addition, CBF-A harbors a domain which is involved in DNA recognition along with CBF-B. Dominant negative analogs of CBF-A have also substantiated our initial observation of assembly of CBF subunits. Our studies define a novel DNA binding structure of heterotrimeric CBF, where the three subunits of CBF follow a particular pathway of assembly of subunits that leads to CBF binding to DNA and activating transcription. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combitiatorial approach restriction endonuclease protection selection and amplification REPSA was successfully used to determine ideal DNA interactions sites of covalent ligands. Unlike most other combinatorial methods, REPSA is based on inhibition of enzymatic cleavage by specific ligand-DNA complexes, which enables identification of binding sites of various ligands. However, the inherent nature of this technique posses a problem during selection of binding sites of covalent ligands. By modifying the technique according to the nature of the ligand, we demonstrate the flexibility of REPSA in identifying the preferred binding sites for monocovalent ligands, topoisomerase I and tallimustine, and the bicovalent ligand topoisomerase II. From among the preferred binding sites, we identified the consensus binding sequence of camptothecin induced topoisomerase I cleavage as ‘aGWT/Gc’, and tallimustine consensus sequences as ‘GTTCTA’ and ‘TTTTTTC’. We have shown for the first time that preferential binding of tallimustine occurs at sequences not previously reported. Furthermore, our data indicate that tallimustine is a novel DNA minor groove, guanine-specific alkylating agent. ^ Additionally, we have demonstrated in vivo that sequence-specific covalent DNA-binding small molecules have the ability to regulate transcription by inhibiting RNA polymerase II. Tallimustine, binding to its preferred sequences located in the 5′ untranslated region were an effective impediment for transcribing polymerase II. The ability of covalent binding small molecules to target predetermined DNA sequences located downstream of the promoter suggests a general approach for regulation of gene expression. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hundreds of genes show aberrant DNA hypermethylation in cancer, yet little is known about the causes of this hypermethylation. We identified RIL as a frequent methylation target in cancer. In search for factors that influence RIL hypermethylation, we found a 12-bp polymorphic sequence around its transcription start site that creates a long allele. Pyrosequencing of homozygous tumors revealed a 2.1-fold higher methylation for the short alleles (P<0.001). Bisulfite sequencing of cancers heterozygous for RIL showed that the short alleles are 3.1-fold more methylated than the long (P<0.001). The comparison of expression levels between unmethylated long and short EBV-transformed cell lines showed no difference in expression in vivo. Electrophorectic mobility shift assay showed that the inserted region of the long allele binds Sp1 and Sp3 transcription factors, a binding that is absent in the short allele. Transient transfection of RIL allele-specific transgenes showed no effects of the additional Sp1 site on transcription early on. However, stable transfection of methylation-seeded constructs showed gradually decreasing transcription levels from the short allele with eventual spreading of de novo methylation. In contrast, the long allele showed stable levels of expression over time as measured by luciferase and approximately 2-3-fold lower levels of methylation by bisulfite sequencing (P<0.001), suggesting that the polymorphic Sp1 site protects against time-dependent silencing. Our finding demonstrates that, in some genes, hypermethylation in cancer is dictated by protein-DNA interactions at the promoters and provides a novel mechanism by which genetic polymorphisms can influence an epigenetic state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mammalian genomes encode at least 15 distinct DNA polymerases, functioning as specialists in DNA replication, DNA repair, recombination, or bypass of DNA damage. Although the DNA polymerase zeta (polzeta) catalytic subunit REV3L is important in defense against genotoxins, little is known of its biological function. This is because REV3L is essential during embryogenesis, unlike other translesion DNA polymerases. Outstanding questions include whether any adult cells are viable in the absence of polzeta and whether polzeta status influences tumorigenesis. REV3L-deficient cells have properties that could influence the development of neoplasia in opposing ways: markedly reduced damage-induced point mutagenesis and extensive chromosome instability. To answer these questions, Rev3L was conditionally deleted from tissues of adult mice using MMTV-Cre. Loss of REV3L was tolerated in epithelial tissues but not in the hematopoietic lineage. Thymic lymphomas in Tp53(-/-) Rev3L conditional mice occurred with decreased latency and higher incidence. The lymphomas were populated predominantly by Rev3L-null T cells, showing that loss of Rev3L can promote tumorigenesis. Remarkably, the tumors were frequently oligoclonal, consistent with accelerated genetic changes in the absence of Rev3L. Mammary tumors could also arise from Rev3L-deleted cells in both Tp53(+/+) and Tp53(+/-) backgrounds. Mammary tumors in Tp53(+/-) mice deleting Rev3L formed months earlier than mammary tumors in Tp53(+/-) control mice. Prominent preneoplastic changes in glandular tissue adjacent to these tumors occurred only in mice deleting Rev3L and were associated with increased tumor multiplicity. Polzeta is the only specialized DNA polymerase yet identified that inhibits spontaneous tumor development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MEF2 is a $\underline{\rm m}$yocyte-specific $\underline{\rm e}$nhancer-binding $\underline{\rm f}$actor that binds a conserved DNA sequence, CTA(A/T)$\sb4$TAG. A MEF2 binding site in the XMyoDa promoter overlaps with the TATA box and is required for muscle specific expression. To examine the potential role of MEF2 in the regulation of MyoD transcription during early development, the appearance of MEF2 binding activity in developing Xenopus embryos was analyzed with the electrophoretic mobility shift assay. Two genes were isolated from a X. Laevis stage 24 cDNA library that encode factors that bind the XMyoDa TFIID/MEF2 site. Both genes are highly homologous to each other, belong to the MADS ($\underline{\rm M}$CM1-$\underline{\rm A}$rg80-agamous-$\underline{\rm d}$eficiens-$\underline{\rm S}$RF) protein family, and most highly related to the mammalian MEF2A gene, hence they are designated as XMEF2A1 and XMEF2A2. Proteins encoded by both cDNAs form specific complexes with the MEF2 binding site and show the same binding specificity as the endogenous MEF2 binding activity. XMEF2A transcripts accumulate preferentially in developing somites after the appearance of XMyoD transcripts. XMEF2 protein begins to accumulate in somites at tailbud stages. Transcriptional activation of XMyoD promoter by XMEF2A required only the MADS box and MEF2-specific domain when XMEF2A is bound at the TATA box. However, a different downstream transactivation domain was required when XMEF2A activates transcription through binding to multiple upstream sites. These results suggest that different activation mechanisms are involved, depending on where the factor is bound. Mutations in several basic amino acid clusters in the MADS box inhibit DNA binding suggesting these amino acids are essential for DNA binding. Mutation of Thr-20 and Ser-36 to the negatively charged amino acid residue, aspartic acid, abolish DNA binding. XMEF2A activity may be regulated by phosphorylation of these amino acids. A dominant negative mutant was made by mutating one of the basic amino acid clusters and deleting the downstream transactivation domain. In vivo roles of MEF2 in the regulation of MyoD transcription were investigated by overexpression of wild type MEF2 and dominant negative mutant of XMEF2A in animal caps and assaying for the effects on the level of expression of MyoD genes. Overexpression of MEF2 activates the transcription of endogenous MyoD gene family while expression of a dominant negative mutant reduces the level of transcription of XMRF4 and myogenin genes. These results suggest that MEF2 is downstream of MyoD and Myf5 and that MEF2 is involved in maintaining and amplifying expression of MyoD and Myf5. MEF2 is upstream of MRF4 and myogenin and plays a role in activating their expression. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell to cell adhesion molecule (CEACAM1), a type II tumor suppressor, has been found to be down-regulated in prostate cancer cells. The mechanism that causes CEACAM1's down-regulation in tumorigenesis is unknown. Here we show that the transcriptional activity of CEACAM1 is decreased in prostate cancer cells. This decrease is not due to methylation of the CEACAM1's promoter, but rather to the alteration of transcription factors regulating CEACAM1 expression. ^ Since androgen/androgen receptors (AR) are potent regulators of prostate growth and differentiation, their role on CEACAM1 gene transcription was examined. The androgen receptor could directly increase CEACAM1 transcriptional activity in a ligand dependent manner by interacting with an AR consensus element that resides in the CEACAM1 promoter. However, AR binding to the CEACAM1 promoter is not related to the loss of CEACAM1 during prostate cancer progression. ^ Further analysis enabled us to determine the particular region in the CEACAM1 promoter that mediates a decrease in CEACAM1 transcriptional activity in prostate cancer cells. Upon further examination, we found that this CEACAM1 promoter region interacts with the Sp1, Sp2, and Sp3 transcription factors. However, only Sp2 expression was found to increase in prostate cancer cells. Inhibiting Sp2 from binding to the CEACAM1 promoter caused an increase in CEACAM1 transcriptional activity in prostate cancer cells. In addition, over-expressing Sp2 in normal prostate cells resulted in a decrease in CEACAM1 transcriptional activity and endogenous protein expression. These observations suggest that Sp2 is a transcription repressor of CEACAM1. Furthermore, prostate cancer cells treated with trichostatin A (TSA), a specific histone deacetylase (HDAC) inhibitor, activated CEACAM1 transcriptional activity. This implies that HDACs are involved in CEACAM1 transcriptional activity. Mutation of the Sp2 DNA binding region on the CEACAM1 promoter inhibited TSA activation of CEACAM1 transcriptional activity. This indicates that HDACs inhibit CEACAM1 transcriptional activity through Sp2. Base on these results, we propose that Sp2 is critical for down-regulating CEACAM1 expression, and one mechanism by which Sp2 represses CEACAM1 expression is by recruiting HDAC to the CEACAM1 promoter in prostate cancer cells. Collectively, these findings provide novel insights into mechanisms that cause the down-regulation of CEACAM1 expression in prostate cancer cells. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Retinoids, important modulators of squamous epithelial differentiation and proliferation, are effective in the treatment and prevention of squamous epithelial cancers, including squamous cell carcinomas (SCCs) of the skin. However, the mechanism is not well understood. Retinoids exert their effects primarily through two nuclear receptor families, retinoic acid receptors (RARα, β and γ) and retinoid X receptors (RXR(α, β and γ), ligand-dependent DNA-binding transcription factors that are members of the steroid hormone receptor superfamily. Retinoid receptor loss has been correlated with squamous epithelial malignancy. This has lead to the hypothesis that reduced RARγ expression and the resulting suppression of retinoid signaling contributes to squamous epithelial malignancy. To test this hypothesis, I attempted to reduce or abolish expression of RARγ, the predominant RAR in squamous epithelia, in several nontumorigenic human squamous epithelial cell lines. The most useful of these cell lines has been SqCCY1, the human head and neck squamous cell carcinoma cell line, along with several subclones stably transfected with RARγ sense and antisense expression constructs. By several criteria, we observed an overall suppression of squamous differentiation in RARγ sense transfectants and an enhancement in RARγ antisense transfectants, relative to parental SqCCY1 cells. We also observed that both sense and antisense cells could form tumors in athymic mice in vivo, while parental SqCCY1 cells could not. Although these results appear contradictory, several conclusions can be drawn. First, loss of RARγ contributes to squamous epithelial tumorigenesis. Second, overexpression of RARγ leads to tumor formation, suppressing differentiation and promoting proliferation, possibly due to a competitive inhibition of limiting concentrations of RXRα, a common heterodimeric partner for many nuclear receptors in addition to RARs, representing a mechanism for RARγ to modulate squamous epithelial homeostasis. The cause for tumorigenesis in the two conditions is likely due to different mechanisms/roles of RARγ in the cell, with the former as a retinoid signaling regulator; and the latter as an RXRα concentration modulator. Finally, High level of RARγ expression sensitizes cells to environmental RA, enhancing RARγ/RXRα-mediated RA signaling. Therefore, RA should be used in skin lesions with suppressed RARγ expression levels, not in skin lesions with overexpressed RARγ levels. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The protein p53 binding protein one (53BP1) was discovered in a yeast two-hybrid screen that used the DNA binding domain of p53 as bait. Cloning of full-length 53BP1 showed that this protein contains several protein domains which help make up the protein, which include two tandem BRCT domains and a amino-terminal serine/glutamine cluster domain (SCD). These are two protein domains are often seen in factors that are involved in the cellular response to DNA damage and control of cell cycle checkpoints and we hypothesize that 53BP1 is involved in the cellular response to DNA damage. In support of this hypothesis we observe that 53BP1 is phosphorylated and undergoes a dramatic nuclear re-localization in response to DNA damaging agents. 53BP1 also interacts with several factors that are important in the cellular response to DNA damage, such as the BRCA1 tumor suppressor, ATM and Rad3 related (ATR), and the phosphorylated version of the histone variant H2AX. Mice deficient in 53BP1 display increased sensitivity ionizing radiation (IR), a DNA damaging agent that introduces DNA double strand breaks (DSBs). In addition, 53BP1-deficient mice do not properly undergo the process of class switch recombination (CSR). We also observe that when a defect in 53BP1 is combined with a defect in p53; the resulting mice have an increased rate of formation of spontaneous tumors, notably the formation of B and T lineage lymphomas. The T lineage tumors arise by two distinct mechanisms: one driven by defects in cell cycle regulation and a second driven by defects in the ability to repair DNA DSBs. The B lineage tumors arise by the inability to repair DNA damage and over-expression of the oncogene c-myc. ^ With these observations, we conclude that not only does 53BP1 function in the cellular response to DNA damage, but it also works in concert with p53 to suppress tumor formation. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transcription factors must be able to access their DNA binding sites to either activate or repress transcription. However, DNA wrapping and compaction into chromatin occludes most binding sites from ready access by proteins. Pioneer transcription factors are capable of binding their DNA elements within a condensed chromatin context and then reducing the level of nucleosome occupancy so that the chromatin structure is more accessible. This altered accessibility increases the probability of other transcription factors binding to their own DNA binding elements. My hypothesis is that Foxa1, a ‘pioneer’ transcription factor, activates alpha-fetoprotein (AFP) expression by binding DNA in a chromatinized environment, reducing the nucleosome occupancy and facilitating binding of additional transcription factors.^ Using retinoic-acid differentiated mouse embryonic stem cells, we illustrate a mechanism for activation of the tumor marker AFP by the pioneer transcription factor Foxa1 and TGF-β downstream effector transcription factors Smad2 and Smad4. In differentiating embryonic stem cells, binding of the Foxa1 forkhead box transcription factor to chromatin reduces nucleosome occupancy and levels of linker histone H1 at the AFP distal promoter. The more accessible DNA is subsequently bound by the Smad2 and Smad4 transcription factors, concurrent with activation of transcription. Chromatin immunoprecipitation analyses combined with siRNA-mediated knockdown indicate that Smad protein binding and the reduction of nucleosome occupancy at the AFP distal promoter is dependent on Foxa1. In addition to facilitating transcription factor binding, Foxa1 is also associated with histone modifications related to active gene expression. Acetylation of lysine 9 on histone H3, a mark that is associated active transcription, is dependent on Foxa1, while methylation of H3K4, also associated with active transcription, is independent of Foxa1. I propose that Foxa1 potentiates a region of chromatin to respond to Smad proteins, leading to active expression of AFP.^ These studies demonstrate one mechanism whereby a transcription factor can alter the accessibility of additional transcription factors to chromatin, by altering nucleosome positions. Specifically, Foxa1 exposes DNA so that Smad4 can bind to its regulatory element and activate transcription of the tumor-marker gene AFP.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Macromolecular interactions, such as protein-protein interactions and protein-DNA interactions, play important roles in executing biological functions in cells. However the complexity of such interactions often makes it very challenging to elucidate the structural details of these subjects. In this thesis, two different research strategies were applied on two different two macromolecular systems: X-ray crystallography on three tandem FF domains of transcription regulator CA150 and electron microscopy on STAT1-importin α5 complex. The results from these studies provide novel insights into the function-structure relationships of transcription coupled RNA splicing mediated by CA150 and the nuclear import process of the JAK-STAT signaling pathway. ^ The first project aimed at the protein-protein interaction module FF domain, which often occurs as tandem repeats. Crystallographic structure of the first three FF domains of human CA150 was determined to 2.7 Å resolution. This is the only crystal structure of an FF domain and the only structure on tandem FF domains to date. It revealed a striking connectivity between an FF domain and the next. Peptide binding assay with the potential binding ligand of FF domains was performed using fluorescence polarization. Furthermore, for the first time, FF domains were found to potentially interact with DNA. DNA binding assays were also performed and the results were supportive to this newly proposed functionality of an FF domain. ^ The second project aimed at understanding the molecular mechanism of the nuclear import process of transcription factor STAT1. The first structural model of pSTAT1-importin α5 complex in solution was built from the images of negative staining electron microscopy. Two STAT1 molecules were observed to interact with one molecule of importin α5 in an asymmetric manner. This seems to imply that STAT1 interacts with importin α5 with a novel mechanism that is different from canonical importin α-cargo interactions. Further in vitro binding assays were performed to obtain more details on the pSTAT1-importin α5 interaction. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

DNA ligase and DNA polymerase play important roles in DNA replication, repair, and recombination. Frequencies of spontaneous and chemical- and physical-induced mutations are correlated to the fidelity of DNA replication. This dissertation elucidates the mechanisms of the DNA ligation reaction by DNA ligases and demonstrates that human DNA ligase I and DNA polymerase $\alpha$ are the molecular targets for two metal ions, Zn$\sp{2+}$ and Cd$\sp{2+},$ and an anticancer drug, F-ara-ATP.^ Human DNA ligases were purified to homogeneity and their AMP binding domains were mapped. Although their AMP-binding domains are similar, there could be difference between the two ligases in their DNA binding domains.^ The formation of the AMP-DNA intermediate and the successive ligation reaction by human DNA ligases were analyzed. Both reactions showed their substrate specificity for ligases I and II, required Mg2+, and were inhibited by ATP.^ A protein inhibitor from HeLa cells and specific for human DNA ligase I but not ligase II and T4 ligase was discovered. It reversibly inhibited DNA ligation activity but not the AMP-binding activity due to the formation of a reversible ligase I-inhibitor complex.^ F-ara-ATP inhibited human DNA ligase I activity by competing with ATP for the AMP-binding site of DNA ligase I, forming a ligase I-F-ara-AMP complex, as well as when it was incorporated at 3$\sp\prime$-terminus of DNA nick by DNA polymerase $\alpha.$^ All steps of the DNA ligation reaction were inhibited by Zn$\sp{2+}$ and Cd$\sp{2+}$ in a concentration-dependent manner. Both ions did not show the ability to change the fidelity of DNA ligation reaction catalyzed by human DNA ligase I. However, Zn$\sp{2+}$ and Cd$\sp{2+}$ showed their contradictory effects on the fidelity of the reaction by human DNA polymerase $\alpha.$ Zn$\sp{2+}$ decreased the frequency of misinsertion but less affected that of mispair extension. On the contrary, Cd$\sp{2+}$ increased the frequencies of both misinsertion and mispair extension at very low concentration. Our data provided strong evidence in the molecular mechanisms for the mutagenicity of zinc and cadmium, and were comparable with the results previously reported. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordinated expression of virulence genes in Bacillus anthracis occurs via a multi-faceted signal transduction pathway that is dependent upon the AtxA protein. Intricate control of atxA gene transcription and AtxA protein function have become apparent from studies of AtxA-induced synthesis of the anthrax toxin proteins and the poly-D-glutamic acid capsule, two factors with important roles in B. anthracis pathogenesis. The amino-terminal region of the AtxA protein contains winged-helix (WH) and helix-turn-helix (HTH) motifs, structural features associated with DNA-binding. Using filter binding assays, I determined that AtxA interacted non-specifically at a low nanomolar affinity with a target promoter (Plef) and AtxA-independent promoters. AtxA also contains motifs associated with phosphoenolpyruvate: sugar phosphotransferase system (PTS) regulation. These PTS-regulated domains, PRD1 and PRD2, are within the central amino acid sequence. Specific histidines in the PRDs serve as sites of phosphorylation (H199 and H379). Phosphorylation of H199 increases AtxA activity; whereas, H379 phosphorylation decreases AtxA function. For my dissertation, I hypothesized that AtxA binds target promoters to activate transcription and that DNA-binding activity is regulated via structural changes within the PRDs and a carboxy-terminal EIIB-like motif that are induced by phosphorylation and ligand binding. I determined that AtxA has one large protease-inaccessible domain containing the PRDs and the carboxy-terminal end of the protein. These results suggest that AtxA has a domain that is distinct from the putative DNA-binding region of the protein. My data indicate that AtxA activity is associated with AtxA multimerization. Oligomeric AtxA was detected when co-affinity purification, non-denaturing gel electrophoresis, and bis(maleimido)hexane (BMH) cross-linking techniques were employed. I exploited the specificity of BMH for cysteine residues to show that AtxA was cross-linked at C402, implicating the carboxy-terminal EIIB-like region in protein-protein interactions. In addition, higher amounts of the cross-linked dimeric form of AtxA were observed when cells were cultured in conditions that promote toxin gene expression. Based on the results, I propose that AtxA multimerization requires the EIIB-like motif and multimerization of AtxA positively impacts function. I investigated the role of the PTS in the function of AtxA and the impact of phosphomimetic residues on AtxA multimerization. B. anthracis Enzyme I (EI) and HPr did not facilitate phosphorylation of AtxA in vitro. Moreover, markerless deletion of ptsHI in B. anthracis did not perturb AtxA function. Taken together, these results suggest that proteins other than the PTS phosphorylate AtxA. Point mutations mimicking phosphohistidine (H to D) and non-phosphorylated histidine (H to A) were tested for an impact on AtxA activity and multimerization. AtxA H199D, AtxA H199A, and AtxA H379A displayed multimerization phenotypes similar to that of the native protein, whereas AtxA H379D was not susceptible to BMH cross-linking or co-affinity purification with AtxA-His. These data suggest that phosphorylation of H379 may decrease AtxA activity by preventing AtxA multimerization. Overall, my data support the following model of AtxA function. AtxA binds to target gene promoters in an oligomeric state. AtxA activity is increased in response to the host-related signal bicarbonate/CO2 because this signal enhances AtxA multimerization. In contrast, AtxA activity is decreased by phosphorylation at H379 because multimerization is inhibited. Future studies will address the interplay between bicarbonate/CO2 signaling and phosphorylation on AtxA function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A previous study in our lab has shown that the transforming neu oncogene ($neu\sp\*$) was able to initiate signals that lead to repression of the neu promoter activity. Further deletion mapping of the neu promoter identified that the GTG element (GGTGGGGGGG), located between $-$243 and $-$234 relative to the translation initiation codon, mediates such a repression effect. I have characterized the four major protein complexes that interact with this GTG element. In situ UV-crosslinking indicated that each complex contains proteins of different molecular weights. The slowest migrating complex (S) contain Sp1 or Sp1-related proteins, as indicated by the data that both have similar molecular weights, similar properties in two affinity chromatographies, and both are antigenically related in gel shift analysis. Methylation protection and interference experiments demonstrated these complexes bind to overlapping regions of the GTG element. Mutations within the GTG element that either abrogate or enhance complex S binding conferred on the neu promoter with lower activity, indicating that positive factors other than Sp1 family proteins also contribute to neu promoter activity. A mutated version (mutant 4) of the GTG element, which binds mainly the fastest migrating complex that contains a very small protein of 26-kDa, can repress transcription when fused to a heterologous promoter. Further deletion and mutation studies suggested that this GTG mutant and its binding protein(s) may cooperate with some DNA element within a heterologous promoter to lock the basal transcription machinery; such a repressor might also repress neu transcription by interfering with the DNA binding of other transactivators. Our results suggest that both positive and negative trans-acting factors converge their binding sites on the GTG element and confer combinatorial control on the neu gene expression. ^