3 resultados para DETECTION SYSTEM
em DigitalCommons@The Texas Medical Center
Resumo:
MAX dimerization protein 1 (MAD1) is a basic-helix-loop-helix transcription factors that recruits transcription repressor such as HDAC to suppress target genes transcription. It antagonizes to MYC because the promoter binding sites for MYC are usually also serve as the binding sites for MAD1 so they compete for it. However, the mechanism of the switch between MYC and MAD1 in turning on and off of genes' transcription is obscure. In this study, we demonstrated that AKT-mediated MAD1 phosphorylation inhibits MAD1 transcription repression function. The association between MAD1 and its target genes' promoter is reduced after been phosphorylated by AKT; therefore, consequently, allows MYC to occupy the binding site and activates transcription. Mutation of such phosphorylation site abrogates the inhibition from AKT. In addition, functional assays demonstrated that AKT suppressed MAD1-mediated transcription repression of its target genes hTERT and ODC. Cell cycle and cell growth were also been released from inhibition by MAD1 in the presents of AKT. Taken together, our study suggests that MAD1 is a novel substrate of AKT and AKT-mediated MAD1 phosphorylation inhibits MAD1function; therefore, activates MAD1 target genes expression. ^ Furthermore, analysis of protein-protein interaction is indispensable for current molecular biology research, but multiplex protein dynamics in cells is too complicated to be analyzed by using existing biochemical methods. To overcome the disadvantage, we have developed a single molecule level detection system with nanofluidic chip. Single molecule was analyzed based on their fluorescent profile and their profiles were plotted into 2 dimensional time co-incident photon burst diagram (2DTP). From this 2DTP, protein complexes were characterized. These results demonstrate that the nanochannel protein detection system is a promising tool for future molecular biology. ^
Resumo:
An interleaved, dual resonance, volume localization technique for $\sp1$H/$\sp{31}$P magnetic resonance spectroscopy has been designed, implemented on a 2 T imager/spectrometer, and verified with phantom studies.^ Localization techniques, including several single voxel techniques and spectroscopic imaging, were implemented, and studies were performed to compare the efficiency of each sequence of $\sp1$H/$\sp{31}$P spectral acquisitions. The sequence chosen was a hybrid of the stimulated echo single voxel technique and the spectroscopic imaging technique.^ Water suppression during the $\sp1$H spectral acquisitions was accomplished by the use of three narrow bandwidth RF saturation pulses in combination with three spoiler gradients. The spoiler gradient amplitudes were selected on the basis of a numerical solution of the Bloch equations. A post-acquisition water suppression algorithm was used to minimize any residual water signal.^ For interleaved $\sp1$H/$\sp{31}$P acquisitions, a dual resonance RF coil was constructed and interfaced to the existing RF detection system via a custom-designed dual resonance transcoupler and switching system. Programmable attenuators were incorporated to allow for changes in receiver and transmitter attenuation "on the fly".^ To provide the rapidly switched gradient fields required for the $\sp1$H/$\sp{31}$P acquisitions, an actively screened gradient coil system was designed and implemented. With this system, gradient field rise times on the order of 100 $\mu$s were obtained. These rapid switching times were necessary for minimizing intrasequence delays and for improving localization quality and water suppression efficiency.^ The interleaved $\sp1$H/$\sp{31}$P volume localization technique was tested using a two-compartment phantom. Analysis of the data showed that the spectral contamination was less than three percent. One-to-one spatial correspondence of the $\sp1$H and $\sp{31}$P spectra was verified and allowed for direct correlation of the spectral data with a standard magnetic resonance image. ^
Resumo:
We have developed a novel way to assess the mutagenicity of environmentally important metal carcinogens, such as nickel, by creating a positive selection system based upon the conditional expression of a retroviral transforming gene. The target gene is the v-mos gene in MuSVts110, a murine retrovirus possessing a growth temperature dependent defect in expression of the transforming gene due to viral RNA splicing. In normal rat kidney cells infected with MuSVts110 (6m2 cells), splicing of the MuSVts110 RNA to form the mRNA from which the transforming protein, p85$\sp{\rm gag-mos}$, is translated is growth-temperature dependent, occurring at 33 C and below but not at 39 C and above. This splicing "defect" is mediated by cis-acting viral sequences. Nickel chloride treatment of 6m2 cells followed by growth at 39 C, allowed the selection of "revertant" cells which constitutively express p85$\sp{\rm gag-mos}$ due to stable changes in the viral RNA splicing phenotype, suggesting that nickel, a carcinogen whose mutagenicity has not been well established, could induce mutations in mammalian genes. We also show by direct sequencing of PCR-amplified integrated MuSVts110 DNA from a 6m2 nickel-revertant cell line that the nickel-induced mutation affecting the splicing phenotype is a cis-acting 70-base duplication of a region of the viral DNA surrounding the 3$\sp\prime$ splice site. These findings provide the first example of the molecular basis for a nickel-induced DNA lesion and establish the mutagenicity of this potent carcinogen. ^