3 resultados para Curves, Algebraic.
em DigitalCommons@The Texas Medical Center
Resumo:
A non-parametric method was developed and tested to compare the partial areas under two correlated Receiver Operating Characteristic curves. Based on the theory of generalized U-statistics the mathematical formulas have been derived for computing ROC area, and the variance and covariance between the portions of two ROC curves. A practical SAS application also has been developed to facilitate the calculations. The accuracy of the non-parametric method was evaluated by comparing it to other methods. By applying our method to the data from a published ROC analysis of CT image, our results are very close to theirs. A hypothetical example was used to demonstrate the effects of two crossed ROC curves. The two ROC areas are the same. However each portion of the area between two ROC curves were found to be significantly different by the partial ROC curve analysis. For computation of ROC curves with large scales, such as a logistic regression model, we applied our method to the breast cancer study with Medicare claims data. It yielded the same ROC area computation as the SAS Logistic procedure. Our method also provides an alternative to the global summary of ROC area comparison by directly comparing the true-positive rates for two regression models and by determining the range of false-positive values where the models differ. ^
Resumo:
The overarching goal of the Pathway Semantics Algorithm (PSA) is to improve the in silico identification of clinically useful hypotheses about molecular patterns in disease progression. By framing biomedical questions within a variety of matrix representations, PSA has the flexibility to analyze combined quantitative and qualitative data over a wide range of stratifications. The resulting hypothetical answers can then move to in vitro and in vivo verification, research assay optimization, clinical validation, and commercialization. Herein PSA is shown to generate novel hypotheses about the significant biological pathways in two disease domains: shock / trauma and hemophilia A, and validated experimentally in the latter. The PSA matrix algebra approach identified differential molecular patterns in biological networks over time and outcome that would not be easily found through direct assays, literature or database searches. In this dissertation, Chapter 1 provides a broad overview of the background and motivation for the study, followed by Chapter 2 with a literature review of relevant computational methods. Chapters 3 and 4 describe PSA for node and edge analysis respectively, and apply the method to disease progression in shock / trauma. Chapter 5 demonstrates the application of PSA to hemophilia A and the validation with experimental results. The work is summarized in Chapter 6, followed by extensive references and an Appendix with additional material.