38 resultados para Cultured epithelial autografts

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus associated with many malignant and nonmalignant human diseases. Life-long latent EBV persistence occurs in blood-borne B lymphocytes, while EBV intermittently productively replicates in mucosal epithelia. Although several models have previously been proposed, the mechanism of EBV transition between these two reservoirs of infection has not been determined. In this study, we present the first evidence demonstrating that EBV latently infects a unique subset of blood-borne mononuclear cells that are direct precursors to Langerhans cells and that EBV both latently and productively infects oral epithelium-resident cells that are likely Langerhans cells. These data form the basis of a proposed new model of EBV transition from blood to oral epithelium in which EBV-infected Langerhans cell precursors serve to transport EBV to the oral epithelium as they migrate and differentiate into oral Langerhans cells. This new model contributes fresh insight into the natural history of EBV infection and the pathogenesis of EBV-associated epithelial disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aldosterone plays a major role in the regulation of salt balance and the pathophysiology of cardiovascular and renal diseases. Many aldosterone-regulated genes--including that encoding the epithelial Na+ channel (ENaC), a key arbiter of Na+ transport in the kidney and other epithelia--have been identified, but the mechanisms by which the hormone modifies chromatin structure and thus transcription remain unknown. We previously described the basal repression of ENaCalpha by a complex containing the histone H3 Lys79 methyltransferase disruptor of telomeric silencing alternative splice variant a (Dot1a) and the putative transcription factor ALL1-fused gene from chromosome 9 (Af9) as well as the release of this repression by aldosterone treatment. Here we provide evidence from renal collecting duct cells and serum- and glucocorticoid-induced kinase-1 (Sgk1) WT and knockout mice that Sgk1 phosphorylated Af9, thereby impairing the Dot1a-Af9 interaction and leading to targeted histone H3 Lys79 hypomethylation at the ENaCalpha promoter and derepression of ENaCalpha transcription. Thus, Af9 is a physiologic target of Sgk1, and Sgk1 negatively regulates the Dot1a-Af9 repressor complex that controls transcription of ENaCalpha and likely other aldosterone-induced genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic cells (DCs) are the most potent antigen-presenting cells for inducing immune responses to tumor cells. Lin−HLA-DR + DC populations in peripheral blood mononuclear cells (PBMCs) and in ascites mononuclear leukocytes (MNLs) of patients with epithelial ovarian cancer (EOC) are phenotypically immature. Lin−HLA-DR + DCs from PBMCs of normal subjects and EOC patients and MNLs from ascites cells of patients were examined for specific cell surface markers or indicators of differentiation or activation. Separating Lin− HLA-DR+ DCs into subsets based on their HLA-DR intensity provided an additional method for identifying the two major lineages of DCs, myeloid and plasmacytoid. The activation potential of these DCs following exposure to the maturation agents CD40 ligand (CD40L) and lipopolysaccharide (LPS) was examined by measurement of IL-12 and IL-10 concentrations in DC culture supernatants in addition to their ability to stimulate allogeneic T cells. DCs from PBMCs of normal subjects and EOC patients and DCs isolated from ascites MNLs of EOC patients were separated into subsets based on CD11c and CD123 cell surface marker expression identifying the major DC types. These subsets were then compared with cells sorted on the basis of HLA-DR intensity. The in vivo behavior of DCs and DC subsets in peripheral blood and ascites following treatment of peritoneal carcinoma patients with the growth factor fins-like tyrosine kinase 3 ligand (Flt3L) was also examined. Increases in proportions and total numbers of DCs from peripheral blood and ascites were associated with increased secretion of IL-12 and IL-10 following in vitro activation of cultured DCs. There were differences between DCs from PBMCs and ascites and between DC subsets in expression of cell surface markers, cytokine profile, and the ability of Lin−HLA-DR + cells to stimulate proliferation of allogeneic T cells from EOC patients. These Lin−HLA-DR+ cells have certain functional properties that suggest that they could have the potential to facilitate an adaptive anti-tumor immune response. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

15-Lipoxygenase 2 (15-LOX2) is a recently cloned human lipoxygenase that shows tissue-restricted expression in prostate, lung, skin, and cornea. The protein level and enzymatic activity of 15-LOX2 have been shown to be down-regulated in prostate cancers compared with normal and benign prostate tissues. We report the cloning and functional characterization of 15-LOX2 and its three splice variants (termed 15-LOX2sv-a, 15-LOX2sv-b, and 15-LOX2sv-c) from primary prostate epithelial (NHP) cells. Western blotting with multiple NHP cell strains and prostate cancer (PCa) cell lines reveals that the expression of 15-LOX2 is lost in all PCa cell lines, accompanied by decreased enzymatic activity. 15-LOX2 is expressed at multiple subcellular locations, including cytoplasm, cytoskeleton, cell-cell border, and nucleus. Surprisingly, the three splice variants of 15-LOX2 are mostly excluded from the nucleus. To elucidate the relationship between nuclear localization, enzymatic activity, and tumor suppressive functions, we established PCa cell clones stably expressing 15-LOX2 or 15-LOX2sv-b. The 15-LOX2 clones express 15-LOX2 in the nuclei and possess robust enzymatic activity, whereas 15-LOX2sv-b clones show neither nuclear protein localization nor arachidonic acid-metabolizing activity. Interestingly, both 15-LOX2- and 15-LOX2sv-b-stable clones proliferate much slower in vitro when compared with control clones. When orthotopically implanted in nude mouse prostate, both 15-LOX2 and 15-LOX2sv-b suppress PC3 tumor growth in vivo. Finally, cultured NHP cells lose the expression of putative stem/progenitor cell markers, slow down in proliferation, and enter senescence. Several pieces of evidence implicate 15-LOX2 plays a role in replicative senescence of NHP cells: (1) promoter activity and the mRNA and protein levels of 15-LOX2 and its splice variants are upregulated in serially passaged NHP cells, which precede replicative senescence and occur in a cell-autonomous manner; (2) PCa cells stably expressing 15-LOX2 or 15-LOX2sv-b show a passage-related senescence-like phenotype; (3) enforced expression of 15-LOX2 or 15-LOX2sv-b in young NHP cells induce partial cell-cycle arrest and senescence-like phenotypes. Together, these results suggest that 15-LOX2 suppress prostate tumor development and do not necessarily depend on arachidonic acid-metabolizing activity and nuclear localization. Also, 15-LOX2 may serve as an endogenous prostate senescence gene and its tumor-suppressing functions might be associated with its ability to induce cell senescence. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A newly described subset of monocytes has been identified in peritoneal exudate cells (PEC) from the malignant ascites of patients with ovarian cancer. These cells were characterized by the production of IL-10 and TGF-β2, but not IL-12, IL-1α, or TNF-α, and expressed CD14, CD16, and CD54, but not HLA-DR, CD80, CD86, CD11a, CD11b, or CD25 cell surface antigens. Since this subset of monocytes could affect the modulation of tumor immune responses in vivo, studies were undertaken to determine their effect on the activation and proliferation of autologous T-cells from the peritoneal cavity of patients with ovarian carcinoma. Cytokine transcripts, including IL-2, GM-CSF, and IFN-γ were detected in T-cells isolated from patient specimens that also contained the IL-10 producing monocytes, although the IFN-γ and IL-2 proteins could not be detected in T-cells co-incubated with the IL-10 producing monocytes in vitro. Additionally, IL-10 producing monocytes co-cultured with autologous T-cells inhibited the proliferation of the T-cells in response to PHA. T-cell proliferation and cytokine protein production could be restored by the addition of neutralizing antibodies to IL-10R and TGF-β to the co-culture system. These results suggested that this subset of monocytes may modulate antitumor immune responses by inhibiting T-cell proliferation and cytokine protein production. Further studies determined that the precursors to the inhibitory monocytes were tumor-associated and only present in the peripheral blood of patients with ovarian cancer and not present in the peripheral blood of healthy donors. These precursors could be induced to the suppressor phenotype by the addition of IL-2 and GM-CSF, two cytokines detected in the peritoneal cavity of ovarian cancer patients. Lastly, it was shown that the suppressor monocytes from the peritoneal cavity of ovarian cancer patients could be differentiated to a non-inhibitory phenotype by the addition of TNF-α and IFN-γ to the culture system. The differentiated monocytes did not produce IL-10, expressed the activation antigens HLA-DR, CD80, and CD86, and were able to stimulate autologous T-cells in vitro. Since a concomitant reduction in immune function is associated with tumor growth and progression, the effects of these monocytes are of considerable importance in the context of tumor immunotherapy. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An abundance of monocytes and macrophages (MO/MA) in the microenvironment of epithelial ovarian cancer (EOC) suggests possible dual roles for these cells. Certain MO/MA subpopulations may inhibit tumor growth by antibody-dependent cell-mediated cytotoxicity (ADCC), phagocytosis, or stimulation of adaptive immunity. In contrast, other MO/MA subpopulations may support tumor growth by immunosuppressive or pro-angiogenic cytokine production. A better understanding of the phenotype and activity of MO/MA in EOC should lead to greater insight into their role in the immunopathobiology of EOC and hence suggest targets for treatment. We have found differences in the proportions of MO/MA subpopulations in the peripheral blood and ascites of EOC patients compared to normal donors, and differences in MO/MA surface phenotype in the associated tumor environment compared to the systemic circulation. We also demonstrate that, following their activation in vitro, monocyte-derived macrophages (MDM) from the peripheral blood and ascites of EOC patients exhibit antitumor effector activities that are different from the behavior of normal donor cells. The phenotypic characteristics and antitumor activity of CD14+ MO/MA and an isolated subpopulation of CD14brightCD16 −HLA-DR+ MO/MA were compared in samples of normal donor peripheral blood and the peripheral blood and ascites from EOC patients. MDM were cultured with macrophage colony-stimulating factor (M-CSF) and activated with lipopolysaccharide (LPS) or a combination of LPS plus recombinant interferon-gamma. We determined that MO/MA from EOC patients had altered morphology and significantly less ADCC and phagocytic activity than did MO/MA from normal donors. ADCC and phagocytosis are mediated by receptors for the Fe portion of IgG (FcγRs), the expression of which were also found to be deficient on EOC MDM from peripheral blood and ascites. Anti-tumor functions not mediated by the FcγRs, such as macrophage mediated cytotoxicity and cytostasis, were not impaired in EOC MDM compared to normal donor MDM. Our findings also showed that MDM from both EOC patients and normal donors produce M-CSF-stimulated cytokines, including interleukin-8, tumor necrosis factor alpha, and interleukin-6, which have the potential to support ovarian tumor growth and metastasis. These findings may be relevant to the pathogenesis of EOC and to the development of future bioimmunotherapeutic strategies. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. METHODS: DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. RESULTS: Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. CONCLUSION: Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and contribute to the molecular carcinogenesis of OSCC. Differential expressions of TRAIL receptors in OSCC do not appear to play a crucial role in their apoptotic rate or metastatic progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The predominant route of human immunodeficiency virus type 1 (HIV-1) transmission is infection across the vaginal mucosa. Epithelial cells, which form the primary barrier of protection against pathogens, are the first cell type at these mucosal tissues to encounter the virus but their role in HIV infection has not been clearly elucidated. Although mucosal epithelial cells express only low levels of the receptors required for successful HIV infection, productive infection does occur at these sites. The present work provides evidence to show that HIV exposure, without the need for productive infection, induces human cervical epithelial cells to produce Thymic Stromal Lymphopoietin (TSLP), an IL7-like cytokine, which potently activated human myeloid dendritic cells (mDC) to cause the homeostatic proliferation of autologous CD4+ T cells that serve as targets for HIV infection. Rhesus macaques inoculated with simian immunodeficiency virus (SIV) or with the simian-human immunodeficiency virus (SHIV) by the vaginal, oral or rectal route exhibited dramatic increases in: TSLP expression, DC and CD4+ T cell numbers, and viral replication, in the vaginal, oral, and rectal tissues, respectively within the first 2 weeks after virus exposure. Evidence obtained showed that HIV-mediated TSLP production by cervical cells is dependent upon the expression of the cell surface salivary agglutinin (SAG) protein gp340. Epithelial cells expressing gp340 exhibited HIV endocytosis and TSLP expression and genetic knockdown of gp340 or use of a gp340-blocking antibody inhibited TSLP expression by HIV. On the other hand, gp340-null epithelial cells failed to endocytose HIV and produce TSLP, but transfection of gp340 resulted in HIV-induced TSLP expression. Finally, HIV-induced TSLP expression was found to be mediated by TLR7/8 signaling and NF-kB activity because silencing these pathways or use of specific inhibitors abrogated TSLP expression in gp340-postive but not in gp340-null epithelial cells. Overall these studies identify TSLP as a key player in the acute phase of HIV-1 infection in permitting HIV to successfully maneuver the hostile vaginal mucosal microenvironment by creating a conducive environment for sustaining the small amount of virus that initially crosses the mucosal barrier allowing it to successfully cause infection and spread to distal compartments of the body

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transduction and activator of transcription 3 (Stat3) is activated by cytokines and growth factors in many cancers. Persistent activation of Stat3 plays important role in cell growth, survival, and transformation through regulating its targeted genes. Previously, we found that mice with a deletion of the G protein-coupled receptor, family C, group 5, member a (Gprc5a) gene develop lung tumors indicating that Gprc5a is a tumor suppressor. In the present study, we examined he mechanism of Gprc5a-mediated tumor suppression. We found that epithelial cells from Gprc5a knockout mouse lung (Gprc5a-/- cells) survive better in vitro in medium deprived of exogenous growth factors and form more colonies in semi-solid medium than their counterparts from wildtype mice (Gprc5a+/+ cells). The phosphorylation of tyrosine 705 on Stat3 and the expression of Stat3-regulated anti-apoptotic genes Bcl-XL, Cryab, Hapa1a, and Mcl1 were higher in the Gprc5a-/- than in Gprc5a+/+ cells. In addition, their responses to Lif were different; Stat3 activation was persistent by Lif treatment in the Gprc5a-/- cells, but was transient in the Gprc5a+/+ cells. The persistent activation of Stat3 by Lif in Gprc5a-/- cells is due to a decreased level of Socs3 protein, a negative inhibitor of the Lif-Stat3 signaling. Restoration of Socs3 inhibited the persistent Stat3 activation in Gprc5a-/- cells. Lung adenocarcinoma cells isolated from Gprc5a-/- mice also exhibited autocrine Lif-mediated Stat3 activation. Treatment of Gprc5a-/- cells isolated from normal and tumor tissue with AG490, a Stat3 signaling inhibitor, or with dominant negative Stat3(Y705F) increased starvation-induced apoptosis and inhibited anchorage-independent growth. These results suggest that persistent Stat3 activation increased the survival and transformation of Gprc5a-/- lung cells. Thus, the tumor suppressive effects of Gprc5a are mediated, at least in part, by inhibition of Stat3 signaling through regulating the stability of the Socs3 protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Productive Epstein‐Barr virus (EBV) replication characterizes hairy leukoplakia, an oral epithelial lesion typically occurring in individuals infected with human immunodeficiency virus (HIV). Serial tongue biopsy specimens were obtained from HIV‐infected subjects before, during, and after valacyclovir treatment. EBV replication was detected by Southern hybridization to linear terminal EBV genome fragments, reverse‐transcriptase polymerase chain reaction amplification of EBV replicative gene transcripts, immunohistochemical detection of EBV replicative protein, and in situ hybridization to EBV DNA. EBV replication was detected in both hairy leukoplakia and normal tongue tissues. Valacyclovir treatment completely abrogated EBV replication in vivo, resulting in resolution of hairy leukoplakia when it was present. EBV replication returned in normal tongue epithelial cells after valacyclovir treatment. These data suggest that normal oral epithelium supports persistent EBV infection in individuals infected with HIV and that productive EBV replication is necessary but not sufficient for the pathogenesis of oral hairy leukoplakia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamin A and its metabolite retinoic acid (RA) are essential elements for normal lung development and the differentiation of lung epithelial cells. We previously showed that RA rapidly activated cyclic AMP response element-binding protein (CREB) in a nonclassical manner in normal human tracheobronchial epithelial (NHTBE) cells. In the present study, we further demonstrated that this nonclassical signaling of RA on the activation of CREB plays a critical role in regulating the expression of airway epithelial cell differentiation markers, the MUC2, MUC5AC, and MUC5B genes. We found that RA rapidly activates the protein kinase Calpha isozyme and transmits the activation signal to CREB via the Raf/MEK/extracellular signal-regulated kinase/p90 ribosomal S6 kinase (RSK) pathway. Activated RSK translocated from the cytoplasm to the nucleus, where it phosphorylates CREB. Activated CREB then binds to a cis-acting replication element motif on the promoter (at nucleotides [nt] -878 to -871) of the MUC5AC gene. The depletion of CREB using small interfering RNA abolished not only the RA-induced MUC5AC but also RA-induced MUC2 and MUC5B. Taken together, our findings demonstrate that CREB activation via this nonclassical RA signaling pathway may play an important role in regulating the expression of mucin genes and mediating the early biological effects of RA during normal mucous differentiation in NHTBE cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CREB [CRE (cAMP-response element)-binding protein] is an important transcription factor that is differentially regulated in cells of various types. We recently reported that RA (retinoic acid) rapidly activates CREB without using RARs (RA receptors) or RXRs (retinoid X receptors) in NHTBE cells (normal human tracheobronchial epithelial cells). However, little is known about the role of RA in the physiological regulation of CREB expression in the early mucous differentiation of NHTBE cells. In the present study, we report that RA up-regulates CREB gene expression and that, using 5'-serial deletion promoter analysis and mutagenesis analyses, two Sp1 (specificity protein 1)-binding sites located at nt -217 and -150, which flank the transcription initiation site, are essential for RA induction of CREB gene transcription. Furthermore, we found that CREs located at nt -119 and -98 contributed to basal promoter activity. Interestingly, RA also up-regulated Sp1 in a time- and dose-dependent manner. Knockdown of endogenous Sp1 using siRNA (small interfering RNA) decreased RA-induced CREB gene expression. However, the converse was not true: knockdown of CREB using CREB siRNA did not affect RA-induced Sp1 gene expression. We conclude that RA up-regulates CREB gene expression during the early stage of NHTBE cell differentiation and that RA-inducible Sp1 plays a major role in up-regulating human CREB gene expression. This result implies that co-operation of these two transcription factors plays a crucial role in mediating early events of normal mucous cell differentiation of bronchial epithelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Excessive and abnormal accumulation of alpha-synuclein (α-synuclein) is a factor contributing to pathogenic cell death in Parkinson's disease. The purpose of this study, based on earlier observations of Parkinson's disease cerebrospinal fluid (PD-CSF) initiated cell death, was to determine the effects of CSF from PD patients on the functionally different microglia and astrocyte glial cell lines. Microglia cells from human glioblastoma and astrocytes from fetal brain tissue were cultured, grown to confluence, treated with fixed concentrations of PD-CSF, non-PD disease control CSF, or control no-CSF medium, then photographed and fluorescently probed for α-synuclein content by deconvolution fluorescence microscopy. Outcome measures included manually counted cell growth patterns from day 1-8; α-synuclein density and distribution by antibody tagged 3D model stacked deconvoluted fluorescent imaging. RESULTS: After PD-CSF treatment, microglia growth was reduced extensively, and a non-confluent pattern with morphological changes developed, that was not evident in disease control CSF and no-CSF treated cultures. Astrocyte growth rates were similarly reduced by exposure to PD-CSF, but morphological changes were not consistently noted. PD-CSF treated microglia showed a significant increase in α-synuclein content by day 4 compared to other treatments (p ≤ 0.02). In microglia only, α-synuclein aggregated and redistributed to peri-nuclear locations. CONCLUSIONS: Cultured microglia and astrocytes are differentially affected by PD-CSF exposure compared to non-PD-CSF controls. PD-CSF dramatically impacts microglia cell growth, morphology, and α-synuclein deposition compared to astrocytes, supporting the hypothesis of cell specific susceptibility to PD-CSF toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute approximately 60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the differentiation of hES cells into an essentially pure (>99%) population of ATII cells (hES-ATII). Purity, as well as biological features and morphological characteristics of normal ATII cells, was demonstrated for the hES-ATII cells, including lamellar body formation, expression of surfactant proteins A, B, and C, alpha-1-antitrypsin, and the cystic fibrosis transmembrane conductance receptor, as well as the synthesis and secretion of complement proteins C3 and C5. Collectively, these data document the successful generation of a pure population of ATII cells derived from hES cells, providing a practical source of ATII cells to explore in disease models their potential in the regeneration and repair of the injured alveolus and in the therapeutic treatment of genetic diseases affecting the lung.