2 resultados para Critical numbers
em DigitalCommons@The Texas Medical Center
Resumo:
We have previously shown that vasculogenesis, the process by which bone marrow-derived cells are recruited to the tumor and organized to form a blood vessel network de novo, is essential for the growth of Ewing’s sarcoma. We further demonstrated that these bone marrow cells differentiate into pericytes/vascular smooth muscle cells(vSMC) and contribute to the formation of the functional vascular network. The molecular mechanisms that control bone marrow cell differentiation into pericytes/vSMC in Ewing’s sarcoma are poorly understood. Here, we demonstrate that the Notch ligand Delta like ligand 4 (DLL4) plays a critical role in this process. DLL4 is essential for the formation of mature blood vessels during development and in several tumor models. Inhibition of DLL4 causes increased vascular sprouting, decreased pericyte coverage, and decreased vessel functionality. We demonstrate for the first time that DLL4 is expressed by bone marrow-derived pericytes/vascular smooth muscle cells in two Ewing’s sarcoma xenograft models and by perivascular cells in 12 out of 14 patient samples. Using dominant negative mastermind to inhibit Notch, we demonstrate that Notch signaling is essential for bone marrow cell participation in vasculogenesis. Further, inhibition of DLL4 using either shRNA or the monoclonal DLL4 neutralizing antibody YW152F led to dramatic changes in blood vessel morphology and function. Vessels in tumors where DLL4 was inhibited were smaller, lacked lumens, had significantly reduced numbers of bone marrow-derived pericyte/vascular smooth muscle cells, and were less functional. Importantly, growth of TC71 and A4573 tumors was significantly inhibited by treatment with YW152F. Additionally, we provide in vitro evidence that DLL4-Notch signaling is involved in bone marrow-derived pericyte/vascular smooth muscle cell formation outside of the Ewing’s sarcoma environment. Pericyte/vascular smooth muscle cell marker expression by whole bone marrow cells cultured with mouse embryonic stromal cells was reduced when DLL4 was inhibited by YW152F. For the first time, our findings demonstrate a role for DLL4 in bone marrow-derived pericyte/vascular smooth muscle differentiation as well as a critical role for DLL4 in Ewing’s sarcoma tumor growth.
Resumo:
The Centers for Disease Control estimates that foodborne diseases cause approximately 76 million illnesses, 325,000 hospitalizations, and 5,000 deaths in the United States each year. The American public is becoming more health conscious and there has been an increase in the dietary intake of fresh fruits and vegetables. Affluence and demand for convenience has allowed consumers to opt for pre-processed packaged fresh fruits and vegetables. These pre-processed foods are considered Ready-to-Eat. They have many of the advantages of fresh produce without the inconvenience of processing at home. After seeing a decline in food-related illnesses between 1996 and 2004, due to an improvement in meat and poultry safety, tainted produce has tilted the numbers back. This has resulted in none of the Healthy People 2010 targets for food-related illness reduction being reached. Irradiation has been shown to be effective in eliminating many of the foodborne pathogens. The application of irradiation as a food safety treatment has been widely endorsed by many of the major associations involved with food safety and public health. Despite these endorsements there has been very little use of this technology to date for reducing the disease burden associated with the consumption of these products. A review of the available literature since the passage of the 1996 Food Quality Protection Act was conducted on the barriers to implementing irradiation as a food safety process for fresh fruits and vegetables. The impediments to adopting widespread utilization of irradiation food processing as a food safety measure involve a complex array of legislative, regulatory, industry, and consumer issues. The FDA’s approval process limits the expansion of the list of foods approved for the application of irradiation as a food safety process. There is also a lack of capacity within the industry to meet the needs of a geographically dispersed industry.^