3 resultados para Corticotropin-releasing Hormone

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adult male golden hamster, when exposed to blinding (BL), short photoperiod (SP), or daily melatonin injections (MEL) demonstrates dramatic reproductive collapse. This collapse can be blocked by removal of the pineal gland prior to treatment. Reproductive collapse is characterized by a dramatic decrease in both testicular weight and serum gonadotropin titers. The present study was designed to examine the interactions of the hypothalamus and pituitary gland during testicular regression, and to specifically compare and contrast changes caused by the three commonly employed methods of inducing testicular regression (BL,SP,MEL). Hypothalamic LHRH content was altered by all three treatments. There was an initial increase in content of LHRH that occurred concomitantly with the decreased serum gonadotropin titers, followed by a precipitous decline in LHRH content which reflected the rapid increases in both serum LH and FSH which occur during spontaneous testicular recrudescence. In vitro pituitary responsiveness was altered by all three treatments: there was a decline in basal and maximally stimulatable release of both LH and FSH which paralleled the fall of serum gonadotropins. During recrudescence both basal and maximal release dramatically increased in a manner comparable to serum hormone levels. While all three treatments were equally effective in their ability to induce changes at all levels of the endocrine system, there were important temporal differences in the effects of the various treatments. Melatonin injections induced the most rapid changes in endocrine parameters, followed by exposure to short photoperiod. Blinding required the most time to induce the same changes. This study has demonstrated that pineal-mediated testicular regression is a process which involves dynamic changes in multiply-dependent endocrine relationships, and proper evaluation of these changes must be performed with specific temporal events in mind. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reproductive hormones have effects on the nervous system not directly related to reproductive function. In the rat, for example, luteinizing hormone releasing hormone has dramatic effects on learning and memory. The present work attempts to examine the effects of reproductive hormones on non-reproductive behaviors and the neural loci and mechanisms underlying these effects in Aplysia, an animal whose behaviors, reproductive hormones and neural circuitry have been well characterized.^ In Aplysia, the neurosecretory bag cells release several peptides that are responsible for eliciting egg laying. The effects of these peptides on the defensive tail-siphon withdrawal reflex, as well as sensitization of this reflex, were examined. Sensitization, a simple form of nonassociative learning, refers to the behavioral enhancement of a response to a test stimulus after the presentation of a strong stimulus, that may last minutes (short-term) or days (long-term). An extract of the bag cells (BCE) inhibited the baseline siphon component of the tail-siphon withdrawal reflex and suppressed long-term, but not short-term, sensitization of the reflex. Preliminary experiments suggest that BCE also affects the tail component of the tail-siphon withdrawal reflex.^ To determine the neural mechanisms underlying the inhibition of the baseline reflex, electrophysiological studies were performed using an in vitro analogue of the tail-siphon withdrawal reflex to examine the ability of BCE, as well as the individual bag cell peptides (BCPs), to modulate the circuitry of the reflex. Bag cell extract attenuated the synaptic strength of the monosynaptic connections between tail sensory neurons and tail motor neurons. When individually applied only $\beta$-BCP produced a similar attenuation. This effect of $\beta$-BCP was not dependent on changes in duration of the presynaptic action potential.^ An in vitro analogue of long-term sensitization training was developed to examine the mechanisms by which the BCPs may affect long-term sensitization of the tail-siphon withdrawal reflex. This analogue exhibited both short- and long-term facilitation of the connections between the tail sensory and motor neurons.^ The results of these behavioral and electrophysiological experiments suggest that the BCPs inhibit the tail-siphon withdrawal reflex, at least in part, by modulating the synaptic strength of the connections between the sensory neurons and motor neurons underlying the reflex. One candidate for this effect is $\beta$-BCP. Thus, the peptides which elicit egg laying may also serve other functions such as the inhibition of defensive reflexes. In addition, these experiments raise the possibility that BCPs may exert a long lasting effect ($>$24 hr), suppressing long-term sensitization of the tail-siphon withdrawal reflex. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gastrin-releasing peptide (GRP) and other bombesin-like peptides stimulate hormone secretion and cell proliferation by binding to specific G-protein-coupled receptors. Three studies were performed to identify potential mechanisms involved in GRP/bombesin receptor regulation.^ Although bombesin receptors are localized throughout the gastrointestinal tract, few gastrointestinal cell lines are available to study bombesin action. In the first study, the binding and function of bombesin receptors in the human HuTu-80 duodenal cancer cell line were characterized. ($\sp{125}$I-Tyr$\sp4$) bombesin bound with high affinity to a GRP-preferring receptor. Bombesin treatment increased IP$\sb3$ production, but had no effect on cell proliferation. Similar processing of ($\sp{125}$I-Tyr$\sp4$) bombesin and of GRP-receptors was observed in HuTu-80 cells and Swiss 3T3 fibroblasts, a cell line which mitogenically responds to bombesin. Therefore, the lack of a bombesin mitogenic effect in HuTu-80 cells is not due to unusual processing of ($\sp{125}$I-Tyr$\sp4$) bombesin or rapid GRP-receptor down-regulation.^ In the second study, a bombesin antagonist was developed to study the processing and regulatory events after antagonist binding. As previously shown, receptor bound agonist, ($\sp{125}$I-Tyr$\sp4$) bombesin, was rapidly internalized and degraded in chloroquine-sensitive compartments. Interestingly, receptor-bound antagonist, ($\sp{125}$I-D-Tyr$\sp6$) bombesin(6-13)PA was not internalized, but degraded at the cell-surface. In contrast to bombesin, (D-Tyr$\sp6$) bombesin(6-13)PA treatment did not cause receptor internalization. Together these results demonstrate that receptor regulation and receptor-mediated processing of antagonist is different from that of agonist.^ Bombesin receptors undergo acute desensitization. By analogy to other G-protein-coupled receptors, a potential desensitization mechanism may involve receptor phosphorylation. In the final study, $\sp{32}$P-labelled Swiss 3T3 fibroblasts and CHO-mBR1 cells were treated with bombesin and the GRP-receptor was immunoprecipitated. In both cell lines, bombesin treatment markedly stimulated GRP-receptor phosphorylation. Furthermore, bombesin-stimulated GRP-receptor phosphorylation occurred within the same time period as bombesin-stimulated desensitization, demonstrating that these two processes are correlated.^ In conclusion, these studies of GRP-receptor regulation further our understanding of bombesin action and provide insight into G-protein-coupled receptor regulation in general. ^