3 resultados para Continuous monitoring with Polarographic Oxygen Sensor
em DigitalCommons@The Texas Medical Center
Resumo:
Quantitative imaging with 18F-FDG PET/CT has the potential to provide an in vivo assessment of response to radiotherapy (RT). However, comparing tissue tracer uptake in longitudinal studies is often confounded by variations in patient setup and potential treatment induced gross anatomic changes. These variations make true response monitoring for the same anatomic volume a challenge, not only for tumors, but also for normal organs-at-risk (OAR). The central hypothesis of this study is that more accurate image registration will lead to improved quantitation of tissue response to RT with 18F-FDG PET/CT. Employing an in-house developed “demons” based deformable image registration algorithm, pre-RT tumor and parotid gland volumes can be more accurately mapped to serial functional images. To test the hypothesis, specific aim 1 was designed to analyze whether deformably mapping tumor volumes rather than aligning to bony structures leads to superior tumor response assessment. We found that deformable mapping of the most metabolically avid regions improved response prediction (P<0.05). The positive predictive power for residual disease was 63% compared to 50% for contrast enhanced post-RT CT. Specific aim 2 was designed to use parotid gland standardized uptake value (SUV) as an objective imaging biomarker for salivary toxicity. We found that relative change in parotid gland SUV correlated strongly with salivary toxicity as defined by the RTOG/EORTC late effects analytic scale (Spearman’s ρ = -0.96, P<0.01). Finally, the goal of specific aim 3 was to create a phenomenological dose-SUV response model for the human parotid glands. Utilizing only baseline metabolic function and the planned dose distribution, predicting parotid SUV change or salivary toxicity, based upon specific aim 2, became possible. We found that the predicted and observed parotid SUV relative changes were significantly correlated (Spearman’s ρ = 0.94, P<0.01). The application of deformable image registration to quantitative treatment response monitoring with 18F-FDG PET/CT could have a profound impact on patient management. Accurate and early identification of residual disease may allow for more timely intervention, while the ability to quantify and predict toxicity of normal OAR might permit individualized refinement of radiation treatment plan designs.
Resumo:
Standard methods for testing safety data are needed to ensure the safe conduct of clinical trials. In particular, objective rules for reliably identifying unsafe treatments need to be put into place to help protect patients from unnecessary harm. DMCs are uniquely qualified to evaluate accumulating unblinded data and make recommendations about the continuing safe conduct of a trial. However, it is the trial leadership who must make the tough ethical decision about stopping a trial, and they could benefit from objective statistical rules that help them judge the strength of evidence contained in the blinded data. We design early stopping rules for harm that act as continuous safety screens for randomized controlled clinical trials with blinded treatment information, which could be used by anyone, including trial investigators (and trial leadership). A Bayesian framework, with emphasis on the likelihood function, is used to allow for continuous monitoring without adjusting for multiple comparisons. Close collaboration between the statistician and the clinical investigators will be needed in order to design safety screens with good operating characteristics. Though the math underlying this procedure may be computationally intensive, implementation of the statistical rules will be easy and the continuous screening provided will give suitably early warning when real problems were to emerge. Trial investigators and trial leadership need these safety screens to help them to effectively monitor the ongoing safe conduct of clinical trials with blinded data.^
Resumo:
Objective: To investigate hemodynamic responses to lateral rotation. ^ Design: Time-series within a randomized controlled trial pilot study. ^ Setting: A medical intensive care unit (ICU) and a medical-surgical ICU in two tertiary care hospitals. ^ Patients: Adult patients receiving mechanical ventilation. ^ Interventions: Two-hourly manual or continuous automated lateral rotation. ^ Measurements and Main Results: Heart rate (HR) and arterial pressure were sampled every 6 seconds for > 24 hours, and pulse pressure (PP) was computed. Turn data were obtained from a turning flow sheet (manual turn) or with an angle sensor (automated turn). Within-subject ensemble averages were computed for HR, mean arterial pressure (MAP), and PP across turns. Sixteen patients were randomized to either the manual (n = 8) or automated (n = 8) turn. Three patients did not complete the study due to hemodynamic instability, bed malfunction or extubation, leaving 13 patients (n = 6 manual turn and n = 7 automated turn) for analysis. Seven patients (54%) had an arterial line. Changes in hemodynamic variables were statistically significant increases ( p < .05), but few changes were clinically important, defined as ≥ 10 bpm (HR) or ≥ 10 mmHg (MAP and PP), and were observed only in the manual-turn group. All manual-turn patients had prolonged recovery to baseline in HR, MAP and PP of up to 45 minutes (p ≤ .05). No significant turning-related periodicities were found for HR, MAP, or PP. Cross-correlations between variables showed variable lead-lag relations in both groups. A statistically, but not clinically, significant increase in HR of 3 bpm was found for the manual-turn group in the back compared with the right lateral position ( F = 14.37, df = 1, 11, p = .003). ^ Conclusions: Mechanically ventilated critically ill patients experience modest hemodynamic changes with manual lateral rotation. A clinically inconsequential increase in HR, MAP, and PP may persist for up to 45 minutes. Automated lateral rotation has negligible hemodynamic effects. ^