1 resultado para Continuous Utility Functions

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is a result of defects in the coordination of cell proliferation and programmed cell death. The extent of cell death is physiologically controlled by the activation of a programmed suicide pathway that results in a morphologically recognizable form of death termed apoptosis. Inducing apoptosis in tumor cells by gene therapy provides a potentially effective means to treat human cancers. The p84N5 is a novel nuclear death domain containing protein that has been shown to bind an amino terminal domain of retinoblastoma tumor suppressor gene product (pRb). Expression of N5 can induce apoptosis that is dependent upon its intact death domain and is inhibited by pRb. In many human cancer cells the functions of pRb are either lost through gene mutation or inactivated by different mechanisms. N5 based gene therapy may induce cell death preferentially in tumor cells relative to normal cells. We have demonstrated that N5 gene therapy is less toxic to normal cells than to tumor cells. To test the possibility that N5 could be used in gene therapy of cancer, we have generated a recombinant adenovirus engineered to express N5 and test the effects of viral infection on growth and tumorigenicity of human cancer cells. Adenovirus N5 infection significantly reduced the proliferation and tumorigenicity of breast, ovarian, and osteosarcoma tumor cell lines. Reduced proliferation and tumorigenicity were mediated by an induction of apoptosis as indicated by DNA fragmentation in infected cells. We also test the potential utility of N5 for gene therapy of pancreatic carcinoma that typically respond poorly to conventional treatment. Adenoviral mediated N5 gene transfer inhibits the growth of pancreatic cancer cell lines in vitro. N5 gene transfer also reduces the growth and metastasis of human pancreatic adenocarcinoma in subcutaneous and orthotopic mouse model. Interestingly, the pancreatic adenocarcinoma cells are more sensitive to N5 than they are to p53, suggesting that N5 gene therapy may be effective in tumors resistant to p53. We also test the possibilities of the use of N5 and p53 together on the inhibition of pancreatic cancer cell growth in vitro and vivo. Simultaneous use of N5 and RbΔCDK has been found to exert a greater extent on the inhibition of pancreatic cancer cell growth in vitro and in vivo. ^