3 resultados para Conformational study of filaments

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of antiproliferative function of p53 by point mutation occurred frequently in various solid tumors. However, the genetic change of p53 by deletion or point mutation was a rare event (6%) in the cells of 49 AML patients analyzed by single-stranded conformation polymorphism and sequencing. Despite infrequent point mutation, abundant levels of p53 protein were detected in 75% of AML patients studied by immunoprecipitation with p53 specific antibodies. Furthermore, p53 protein in most cases had an altered conformation as analyzed by the reactivity to PAb240 which recognizes mutant p53; p53 protein in mitogen stimulated normal lymphocytes also had similar altered conformation. This altered conformation may be another mechanism for inactivation of p53 function in the growth stimulated environment. Some evidence indicated that posttranslational modification by phosphorylation may contribute to the conformational change of p53.^ Retinoblastoma (Rb) gene inactivation by deletion, rearrangement or mutation has also been implicated in many types of solid tumors. Our studies showed that absence or low levels of Rb protein were observed in more than 20% of AML patients at diagnosis, and the low levels of Rb correlated with shorter survival of patients. The absence of Rb protein was due to gene inactivation in some cases and to abnormal regulation of Rb expression in others. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA for this study was collected from a sample of 133 retinitis pigmentosa (RP) patients and the rhodopsin locus molecularly analyzed by linkage and for disease specific mutations. The cohort of patients consisted of 85 individuals diagnosed with autosomal dominant RP (adRP), and 48 patients representing other forms of retinitis pigmentosa or retinal dystrophy related disease. In three large families with adRP rhodopsin was excluded from linkage to the disease locus. A search for subtle mutations in the rhodopsin coding region using single strand conformational polymorphisms (SSCP) and sequencing detected a total of 14 unique sequence variants in 24 unrelated patients. These variants included one splicing variant, 5168 -1G-A, one deletion variant of 17 base pairs causing a frame shift at codon 332, and 12 misense variants: Pro23His, Leu46Arg, Gly106Trp, Arg135Pro, Pro171Glu, Pro180Ala, Glu181Lys, Asp190Asn, His211Arg, Ser270Arg, Leu328Pro and Pro347Thr. All but three of the missense variants change amino acids that are evolutionarily conserved. The Pro23His mutation was found in 10 unrelated individuals with family histories of adRP and not in any normal controls (over 80 chromosomes tested). The Pro180Ala mutation was present in a patient with simplex RP and probably represents a new mutation. Three normal polymorphic nucleotide substitutions, A-269-G, T-3982-C, and G-5145-A, were also identified. We conclude, based on this study, that 25% of adRP cases are attributable to rhodopsin mutations.^ Clinical data, including ERG results and visual field testing, was available for patients with eleven different mutations. The eleven patients were all diagnosed with RP, however the severity of the disease varied with five patients mildly affected and diagnosed with type II adRP and 5 patients severely affected and diagnosed with type I adRP. The patient with simplex RP was mildly affected. The location of the mutations within the rhodopsin protein was randomly associated with the severity of the disease in those patients evaluated. However, four mutations, Pro23His, Leu46Arg, Pro347Thr, and 5168 -1G-A, are particularly interesting. The Pro23His mutation appears to have radiated from a recent common ancestor of the affected patients as all of them share a common haplotype at the rhodopsin locus. The Leu46Arg mutation causes an unusually severe form of RP. Hydropathy analysis of the mutated sequence revealed a marked change in the hydrophobicity of this first transmembrane spanning region. Codon 347 has been the target of multiple mutations with at least six documented changes at the position, significantly more than expected by a random distribution of mutations. Finally the splice-site variant is extremely variable in its expression in the family studied. Similar mutations have been reported in other cases of adRP and postulated to be involved in autosomal recessive RP (arRP). Mechanisms to account for the variable expression of rhodopsin mutations in relation to RP heterogeneity are discussed. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Filamin is a high molecular weight (2 x 250,000) actin crosslinking protein found in a wide variety of cells and tissues. The most striking feature of filamin is its ability to crosslink F-actin filaments and cause ATP-independent gelation and contraction of F-actin solutions. The gelation of actin filaments by filamin involves binding to actin and crosslinking of the filaments by filamin self-association. In order to understand the role of filamin-actin interactions in the regulation of cytoskeletal assembly, two approaches were used. First, the structural relationship between self-association and actin-binding was examined using proteolytic fragments of filamin. Treatment of filamin with papain generated two major fragments, 90Kd and 180Kd. Upon incubation of the papain digest with F-actin and centrifugation at 100,000 x g, only the 180Kd fragment co-sedimented with F-actin. The binding of the 180Kd fragment, P180, was similar to native filamin in its sensitivity to ionic strength. Analytical gel filtration studies indicated that, unlike native filamin, P180 was monomeric and did not self-associate. Thermolysin treatment of P180 produced a 170Kd fragment, PT170, which no longer bound and co-sedimented with F-actin. These results suggested that filamin contained a discrete actin-binding domain. In order to locate the actin-binding domain, affinity purified antibodies to the papain and thermolysin sensitive regions of filamin were used in conjunction with filamin fragments generated by digestion with S. aureus V8 protease and elastase. The results indicated that the papain and thermolysin cleavage sites were close together, and, most likely, within 10Kd of one another. Taken together, these data suggest that filamin contains a discrete, internal actin-binding domain. The second approach was to use the non-crosslinking fragment P180 to develop a quantitative assay of filamin-actin binding. The binding of ('14)C-carboxyalkylated P180 was examined using the co-sedimentation assay. ('14)C-P180 binding to actin was equivalent to that of unlabelled P180 and exhibited comparable sensitivity of binding to changes in ionic strength. Within 5 min. of incubation the process had reached equilibrium. The specificity of binding was shown by the lack of binding of ('14)C-PT170. The binding of ('14)C-P180 was found to be a reversible and saturable process, with a K(,d) of 2 x 10('-7) M. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^