11 resultados para Conformational diseases
em DigitalCommons@The Texas Medical Center
Resumo:
Ionotropic glutamate receptors are important excitatory neurotransmitter receptors in the mammalian central nervous system that have been implicated in a number of neuropathologies such as epilepsy, ischemia, and amyotrophic lateral sclerosis. Glutamate binding to an extracellular ligand binding domain initiates a series of structural changes that leads to the formation of a cation selective transmembrane channel, which consequently closes due to desensitization of the receptor. The crystal structures of the AMPA subtype of the glutamate receptor have been particularly useful in providing initial insight into the conformational changes in the ligand binding domain; however, these structures are limited by crystallographic constraint. To gain a clear picture of how agonist binding is coupled to channel activation and desensitization, it is essential to study changes in the ligand binding domain in a dynamic, physiological state. In this dissertation, a technique called Luminescence Resonance Energy Transfer was used to determine the conformational changes associated with activation and desensitization in a functional AMPA receptor (ÄN*-AMPA) that contains the ligand binding domain and transmembrane segments; ÄN*-AMPA has been modified such that fluorophores can be introduced at specific sites to serve as a readout of cleft closure or to establish intersubunit distances. Previous structural studies of cleft closure of the isolated ligand binding domain in conjunction with functional studies of the full receptor suggest that extent of cleft closure correlates with extent of activation. Here, LRET has been used to show that a similar relationship between cleft closure and activation is observed in the “full length” receptor showing that the isolated ligand binding domain is a good model of the domain in the full length receptor for changes within a subunit. Similar LRET investigations were used to study intersubunit distances specifically to probe conformational changes between subunits within a dimer in the tetrameric receptor. These studies show that the dimer interface is coupled in the open state, and decoupled in the desensitized state, similar to the isolated ligand binding domain crystal structure studies. However, we show that the apo state dimer interface is not pre-formed as in the crystal structure, hence suggesting a mechanism for functional transitions within the receptor based on LRET distances obtained.
Resumo:
Chronic lung diseases (CLDs) are a considerable source of morbidity and mortality and are thought to arise from dysregulation of normal wound healing processes. An aggressive, feature of many CLDs is pulmonary fibrosis (PF) and is characterized by excess deposition of extracellular matrix (ECM) proteins from myofibroblasts in airways. However, factors regulating myofibroblast biology are incompletely understood. Proteins in the cadherin family contribute epithelial to mesenchymal transition (EMT), a suggested source of myofibroblasts. Cadherin 11 (CDH11) contributes to developmental and pathologic processes that parallel those seen in PF and EMT. Utilizing Cdh11 knockout (Cdh11 -/-) mice, the goal of this study was to characterize the contribution of CDH11 in the bleomycin model of PF and assess the feasibility of treating established PF. We demonstrate CDH11 in macrophages and airway epithelial cells undergoing EMT in lungs of mice given bleomycin and patients with PF. Endpoints consistent with PF including ECM production and myofibroblast formation are reduced in CDH11-targeted mice given bleomycin. Findings suggesting mechanisms of CDH11-dependent fibrosis include the regulation of the profibrotic mediator TGF-â in alveolar macrophages and CDH11-mediated EMT. The results of this study propose CDH11 as a novel drug target for PF. In addition, another CLD, chronic obstructive pulmonary disease (COPD), is characterized by airway inflammation and destruction. Adenosine, a nucleoside signaling molecule generated in response to cell stress is upregulated in patients with COPD and is suggested to contribute to its pathogenesis. An established model of adenosine-mediated lung injury exhibiting features of COPD is the Ada -/- mouse. Previous studies in our lab suggest features of the Ada -/- phenotype may be secondary to adenosine-dependent expression of osteopontin (OPN). OPN is a protein implicated in a variety of human pathology, but its role in COPD has not been examined. To address this, Ada/Opn -/- mice were generated and endpoints consistent with COPD were examined in parallel with Ada -/- mice. Results demonstrate OPN-mediated pulmonary neutrophilia and airway destruction in Ada -/- mice. Furthermore, patients with COPD exhibit increased OPN in airways which correlate with clinical airway obstruction. These results suggest OPN represents a novel biomarker or therapeutic target for the management of patients with COPD. The importance of findings in this thesis is highlighted by the fact that no pharmacologic interventions have been shown to interfere with disease progression or improve survival rates in patients with COPD or PF.
Resumo:
Missense mutations in smooth muscle cell (SMC) specific ACTA2 (á-actin) and MYH11 (â-myosin heavy chain) cause diffuse and diverse vascular diseases, including thoracic aortic aneurysms and dissections (TAAD) and early onset coronary artery disease and stroke. The mechanism by which these mutations lead to dilatation of some arteries but occlusion of others is unknown. We hypothesized that the mutations act through two distinct mechanisms to cause varied vascular diseases: a loss of function, leading to decreased SMC contraction and aneurysms, and a gain of function, leading to increased SMC proliferation and occlusive disease. To test this hypothesis, ACTA2 mutant SMCs and myofibroblasts were assessed and found to not form á-actin filaments whereas control cells did, suggesting a dominant negative effect of ACTA2 mutations on filament formation. A loss of á-actin filaments would be predicted to cause decreased SMC contractility. Histological examination of vascular tissues from patients revealed SMC hyperplasia leading to arterial stenosis and occlusion, supporting a gain of function associated with the mutant gene. Furthermore, ACTA2 mutant SMCs and myofibroblasts proliferated more rapidly in static culture than control cells (p<0.05). We also determined that Acta2-/- mice have ascending aortic aneurysms. Histological examination revealed aortic medial SMC hyperplasia, but minimal features of medial degeneration. Acta2-/- SMCs proliferated more rapidly in culture than wildtype (p<0.05), and microarray analysis of Acta2-/- SMCs revealed increased expression of Actg2, 15 collagen genes, and multiple focal adhesion genes. Acta2-/- SMCs showed altered localization of vinculin and zyxin and increased phosphorylated focal adhesion kinase (FAK) in focal adhesions. A specific FAK inhibitor decreased Acta2-/- SMC proliferation to levels equal to wildtype SMCs (p<0.05), suggesting that FAK activation leads to the increased proliferation. We have described a unique pathology associated with ACTA2 and MYH11 mutations, as well as an aneurysm phenotype in Acta2-/- mice. Additionally, we identified a novel pathogenic pathway for vascular occlusive disease due to loss of SMC contractile filaments, alterations in focal adhesions, and activation of FAK signaling in SMCs with ACTA2 mutations.
Resumo:
The central event in protein misfolding disorders (PMDs) is the accumulation of a misfolded form of a naturally expressed protein. Despite the diversity of clinical symptoms associated with different PMDs, many similarities in their mechanism suggest that distinct pathologies may cross talk at the molecular level. The main goal of this study was to analyze the interaction of the protein misfolding processes implicated in Alzheimer's and prion diseases. For this purpose, we inoculated prions in an Alzheimer's transgenic mouse model that develop typical amyloid plaques and followed the progression of pathological changes over time. Our findings show a dramatic acceleration and exacerbation of both pathologies. The onset of prion disease symptoms in transgenic mice appeared significantly faster with a concomitant increase on the level of misfolded prion protein in the brain. A striking increase in amyloid plaque deposition was observed in prion-infected mice compared with their noninoculated counterparts. Histological and biochemical studies showed the association of the two misfolded proteins in the brain and in vitro experiments showed that protein misfolding can be enhanced by a cross-seeding mechanism. These results suggest a profound interaction between Alzheimer's and prion pathologies, indicating that one protein misfolding process may be an important risk factor for the development of a second one. Our findings may have important implications to understand the origin and progression of PMDs.
Resumo:
Na(+)/Ca(2+) exchangers (NCX) constitute a major Ca(2+) export system that facilitates the re-establishment of cytosolic Ca(2+) levels in many tissues. Ca(2+) interactions at its Ca(2+) binding domains (CBD1 and CBD2) are essential for the allosteric regulation of Na(+)/Ca(2+) exchange activity. The structure of the Ca(2+)-bound form of CBD1, the primary Ca(2+) sensor from canine NCX1, but not the Ca(2+)-free form, has been reported, although the molecular mechanism of Ca(2+) regulation remains unclear. Here, we report crystal structures for three distinct Ca(2+) binding states of CBD1 from CALX, a Na(+)/Ca(2+) exchanger found in Drosophila sensory neurons. The fully Ca(2+)-bound CALX-CBD1 structure shows that four Ca(2+) atoms bind at identical Ca(2+) binding sites as those found in NCX1 and that the partial Ca(2+) occupancy and apoform structures exhibit progressive conformational transitions, indicating incremental regulation of CALX exchange by successive Ca(2+) binding at CBD1. The structures also predict that the primary Ca(2+) pair plays the main role in triggering functional conformational changes. Confirming this prediction, mutagenesis of Glu(455), which coordinates the primary Ca(2+) pair, produces dramatic reductions of the regulatory Ca(2+) affinity for exchange current, whereas mutagenesis of Glu(520), which coordinates the secondary Ca(2+) pair, has much smaller effects. Furthermore, our structures indicate that Ca(2+) binding only enhances the stability of the Ca(2+) binding site of CBD1 near the hinge region while the overall structure of CBD1 remains largely unaffected, implying that the Ca(2+) regulatory function of CBD1, and possibly that for the entire NCX family, is mediated through domain interactions between CBD1 and the adjacent CBD2 at this hinge.
Resumo:
The family of membrane protein called glutamate receptors play an important role in the central nervous system in mediating signaling between neurons. Glutamate receptors are involved in the elaborate game that nerve cells play with each other in order to control movement, memory, and learning. Neurons achieve this communication by rapidly converting electrical signals into chemical signals and then converting them back into electrical signals. To propagate an electrical impulse, neurons in the brain launch bursts of neurotransmitter molecules like glutamate at the junction between neurons, called the synapse. Glutamate receptors are found lodged in the membranes of the post-synaptic neuron. They receive the burst of neurotransmitters and respond by fielding the neurotransmitters and opening ion channels. Glutamate receptors have been implicated in a number of neuropathologies like ischemia, stroke and amyotrophic lateral sclerosis. Specifically, the NMDA subtype of glutamate receptors has been linked to the onset of Alzheimer’s disease and the subsequent degeneration of neuronal cells. While crystal structures of AMPA and kainate subtypes of glutamate receptors have provided valuable information regarding the assembly and mechanism of activation; little is known about the NMDA receptors. Even the basic question of receptor assembly still remains unanswered. Therefore, to gain a clear understanding of how the receptors are assembled and how agonist binding gets translated to channel opening, I have used a technique called Luminescence Resonance Energy Transfer (LRET). LRET offers the unique advantage of tracking large scale conformational changes associated with receptor activation and desensitization. In this dissertation, LRET, in combination with biochemical and electrophysiological studies, were performed on the NMDA receptors to draw a correlation between structure and function. NMDA receptor subtypes GluN1 and GluN2A were modified such that fluorophores could be introduced at specific sites to determine their pattern of assembly. The results indicated that the GluN1 subunits assembled across each other in a diagonal manner to form a functional receptor. Once the subunit arrangement was established, this was used as a model to further examine the mechanism of activation in this subtype of glutamate receptor. Using LRET, the correlation between cleft closure and activation was tested for both the GluN1 and GluN2A subunit of the NMDA receptor in response to agonists of varying efficacies. These investigations revealed that cleft closure plays a major role in the mechanism of activation in the NMDA receptor, similar to the AMPA and kainate subtypes. Therefore, suggesting that the mechanism of activation is conserved across the different subtypes of glutamate receptors.
Resumo:
Integrin adhesion molecules have both positive and negative potential in the regulation of peripheral blood T cell (PB T cell) activation, yet their mechanism of action in the mediation of human T lymphocyte function remains largely undefined. The goals of this study then were to elucidate integrin signaling mechanisms in PB T cells.^ By ligating $\beta$1 integrins with mAb 18D3, it was demonstrated that costimulation of PB T cell proliferation induced by coimmobilizing antibodies specific for $\beta$1, $\beta$2, and $\beta$7 integrin subfamilies in conjunction with the anti-CD3 mAb OKT3 was inhibited. Costimulation of T cell proliferation induced by non-integrins CD4, CD26, CD28, CD44, CD45RA, or CD45RO was unaffected. Inhibition of costimulation correlated with diminished IL-2 production. In his manner, $\beta$1 integrins could regulate heterologous integrins of the $\beta$2 and $\beta$7 subfamilies in a transdominant fashion. It was also demonstrated that integrin costimulation of T cell activation was acutely sensitive to the structural conformation of $\beta$1 integrins. Using the cyclic hexapeptide CWLDVC (TBC772, which is based on the $\alpha4\beta1$ integrin binding site in fibronectin) in soluble form, it was shown that integrins locked into a conformation displaying a neo-epitope called the ligand induced binding site (LIBS) recognized by mAb 15/7 were inhibited from sending mitogenic signals to T cells. When BSA-conjugated TBC772 was coimmobilized with anti-CD3 mAb OKT3, costimulation of proliferation occurred. This suggested that temporally uncoupling integrin receptor occupancy from receptor crosslinking inhibited $\beta$1 integrin signaling mechanisms. When subsets of PB T cells were examined to determine those initially activated by integrins within 6 hours of activation, costimulation induced intracellular accumulation of IL-2 predominantly in the CD4$\sp+$ and CD45RO$\sp+$ T cell subsets. This was similar to a number of PB T cell costimulatory molecules including CD26, CD43, CD44. Only CD28 costimulated IL-2 production from both CD45RA$\sp+$ and CD45RO$\sp+$ subpopulations.^ The GTPase Rho has been implicated in regulating integrin mediated stress fiber formation and anchorage dependent growth in fibroblasts, so studies were initiated to determine if Rho played a role in integrin dependent T cell function. In order to perform this, a technique based on scrape-loading was developed to incorporate macromolecules into PB T cells that maintained their functional activity. With this technique, C3 exoenzyme from Clostridium botulinum was incorporated into PB T cells. C3 ADP-ribosylates Rho proteins on Asn$\sp{41},$ which is in close proximity to the Rho effector domain, rendering it inactive. It was demonstrated that functional Rho is not required for basal or upregulated PB T cell adhesion to $\beta$1 integrin substrates, however PB T cell homotypic aggregation induced by PMA, which is an event mediated predominantly by the integrin $\rm\alpha L\beta2,$ was delayed. PB T cells lacking Rho function displayed altered cell morphology on $\beta$1 integrin ligands, producing stellate, dendritic-like pseudopodia. Rho activity was also found to be required for integrin dependent costimulation of proliferation. When intracellular accumulation of IL-2 was measured, inactivation of Rho prevented both integrin and CD28 costimulatory activity. Rho was identified to lie upstream of signals mediating PKC activation and Ca$\sp{++}$ fluxes, as PMA and ionomycin activation of PB T cells was unaffected by the inactivation of Rho. ^