5 resultados para Concanavalin-A

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclosporine (CsA) has shown great benefit to organ transplant recipients, as an immunosuppressive drug. To optimize CsA immunosuppressive therapy, pharmacodynamic evaluation of serial patient serum samples after CsA administration, using mixed lymphocyte culture (MLC) assays, revealed in vitro serum immunosuppressive activity of a CsA-like, ether-extractable component, associated with good clinical outcome in vivo. Since the in vitro immunosuppressive CsA metabolites, M-17 and M-1, are erythrocyte-bound, the immunosuppressive activity demonstrated in patient serum suggests that other immunosuppressive metabolites need exist. To test this hypothesis and obtain CsA metabolites for study, ether-extracted bile from tritiated and nonradioactive CsA-treated pigs was processed by novel high performance liquid and thin-layer chromatography (HPLC and HPTLC) techniques. Initial MLC screening of potential metabolites revealed a component, designated M-E, to have immunosuppressive activity. Pig bile-derived M-E was characterized as a CsA metabolite, by radioactive CsA tracer studies, by 56% crossreactivity in CsA radioimmunoassay, and by mass spectrometric (MS) analysis. MS revealed a CsA ring structure, hydroxylated at a site other than at amino acid one. M-E was different than M-1 and M-17, as demonstrated by different retention properties for each metabolite, using HPTLC and a novel rhodamine B/ $\alpha$-cyclodextrin stain, and using HPLC, performed by Sandoz, that revealed M-E to be different than previously characterized metabolites. The immunosuppressive activity of M-E was quantified by determination of mean metabolite potency ratio in human MLC assays, which was found to be 0.79 $\pm$ 0.23 (CsA, 1.0). Similar to parent drug, M-E revealed inter-individual differences in its immunosuppressive activity. M-E demonstrates inhibition of IL-2 production by concanavalin A stimulated C3H mouse spleen cells, similar to CsA, as determined with an IL-2 dependent mouse cytotoxic T-cell line. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Red Blood cell mediated and glass needle mediated microinjection technology was used to introduce macromolecules into mammalian somatic cells. The biological activities of DNA synthesis inducing factor(s) (Chapter 1), mitotic factor(s) (Chapter 2), and DNA coding for ovalbumin and thymidine kinase (Chapter 3) were studied following injection into mammalian somatic cells.^ Chapter 1. A cell undergoing DNA replication (S phase) contains a factor(s) that induces DNA synthesis prematurely in a G(,1) nucleus when an S phase cell is fused to a G(,1) cell. An assay for the active factor(s) was developed in which a mixture of s phase extract loaded red blood cells (RBC) and synchronous G(,1) HeLa cells was centrifuged onto Concanavalin A (Con A) treated coverslips and fused by PEG. This technique is called "Centrifusion". The synchronous G(,1) HeLa cells injected with S phase extract initiated DNA synthesis earlier than the control G(,1) cells mock injected with RBC loaded with buffer.^ Chapter 2. It has been demonstrated that fusion between a mitotic and an interphase cell usually leads to breakdown of the interphase nucleus, followed by condensation of the interphase chromatin into discrete chromosomes, a process termed premature chromosome condensation. I wanted to develop an assay for the mitotic factor(s) that induces premature chromosome condensation. Experiments were performed utilizing glass needle mediated microinjection of HeLa cell mitotic extract into interphase somatic mammalian cells in an attempt to induce premature chromosome condensation. However, I was not able to induce premature chromosome condensation in the interphase cells, probably because of an inability to introduce sufficient mitotic factor(s) into the cells.^ Chapter 3. A recombinant plasmid containing the chicken ovalbumin gene and three copies of the Herpes thymidine Kinase gene (pOV12-TK) was introduced into mouse LMTK('-) cell nuclei using glass needle mediated gene transfer resulting in LMTK('+) clones that were selected for in HAT medium. Restriction enzyme analysis of the high molecular weight DNA from 6 HAT medium survivor cell clones revealed the presence of one or at best only a few copies of the 12kb ovalbumin gene per mouse genome. Further analysis showed the ovalbumin DNA was not rearranged and was associated with high molecular weight mouse cell DNA. Each of the analyzed cell clones produced ovalbumin demonstrating that the biological activity of the microinjected ovalbumin was retained. ^