4 resultados para Computations Driven Systems
em DigitalCommons@The Texas Medical Center
Resumo:
BACKGROUND: The most effective decision support systems are integrated with clinical information systems, such as inpatient and outpatient electronic health records (EHRs) and computerized provider order entry (CPOE) systems. Purpose The goal of this project was to describe and quantify the results of a study of decision support capabilities in Certification Commission for Health Information Technology (CCHIT) certified electronic health record systems. METHODS: The authors conducted a series of interviews with representatives of nine commercially available clinical information systems, evaluating their capabilities against 42 different clinical decision support features. RESULTS: Six of the nine reviewed systems offered all the applicable event-driven, action-oriented, real-time clinical decision support triggers required for initiating clinical decision support interventions. Five of the nine systems could access all the patient-specific data items identified as necessary. Six of the nine systems supported all the intervention types identified as necessary to allow clinical information systems to tailor their interventions based on the severity of the clinical situation and the user's workflow. Only one system supported all the offered choices identified as key to allowing physicians to take action directly from within the alert. Discussion The principal finding relates to system-by-system variability. The best system in our analysis had only a single missing feature (from 42 total) while the worst had eighteen.This dramatic variability in CDS capability among commercially available systems was unexpected and is a cause for concern. CONCLUSIONS: These findings have implications for four distinct constituencies: purchasers of clinical information systems, developers of clinical decision support, vendors of clinical information systems and certification bodies.
Resumo:
To reach the goals established by the Institute of Medicine (IOM) and the Centers for Disease Control's (CDC) STOP TB USA, measures must be taken to curtail a future peak in Tuberculosis (TB) incidence and speed the currently stagnant rate of TB elimination. Both efforts will require, at minimum, the consideration and understanding of the third dimension of TB transmission: the location-based spread of an airborne pathogen among persons known and unknown to each other. This consideration will require an elucidation of the areas within the U.S. that have endemic TB. The Houston Tuberculosis Initiative (HTI) was a population-based active surveillance of confirmed Houston/Harris County TB cases from 1995–2004. Strengths in this dataset include the molecular characterization of laboratory confirmed cases, the collection of geographic locations (including home addresses) frequented by cases, and the HTI time period that parallels a decline in TB incidence in the United States (U.S.). The HTI dataset was used in this secondary data analysis to implement a GIS analysis of TB cases, the locations frequented by cases, and their association with risk factors associated with TB transmission. ^ This study reports, for the first time, the incidence of TB among the homeless in Houston, Texas. The homeless are an at-risk population for TB disease, yet they are also a population whose TB incidence has been unknown and unreported due to their non-enumeration. The first section of this dissertation identifies local areas in Houston with endemic TB disease. Many Houston TB cases who reported living in these endemic areas also share the TB risk factor of current or recent homelessness. Merging the 2004–2005 Houston enumeration of the homeless with historical HTI surveillance data of TB cases in Houston enabled this first-time report of TB risk among the homeless in Houston. The homeless were more likely to be US-born, belong to a genotypic cluster, and belong to a cluster of a larger size. The calculated average incidence among homeless persons was 411/100,000, compared to 9.5/100,000 among housed. These alarming rates are not driven by a co-infection but by social determinants. The unsheltered persons were hospitalized more days and required more follow-up time by staff than those who reported a steady housing situation. The homeless are a specific example of the increased targeting of prevention dollars that could occur if TB rates were reported for specific areas with known health disparities rather than as a generalized rate normalized over a diverse population. ^ It has been estimated that 27% of Houstonians use public transportation. The city layout allows bus routes to run like veins connecting even the most diverse of populations within the metropolitan area. Secondary data analysis of frequent bus use (defined as riding a route weekly) among TB cases was assessed for its relationship with known TB risk factors. The spatial distribution of genotypic clusters associated with bus use was assessed, along with the reported routes and epidemiologic-links among cases belonging to the identified clusters. ^ TB cases who reported frequent bus use were more likely to have demographic and social risk factors associated with poverty, immune suppression and health disparities. An equal proportion of bus riders and non-bus riders were cultured for Mycobacterium tuberculosis, yet 75% of bus riders were genotypically clustered, indicating recent transmission, compared to 56% of non-bus riders (OR=2.4, 95%CI(2.0, 2.8), p<0.001). Bus riders had a mean cluster size of 50.14 vs. 28.9 (p<0.001). Second order spatial analysis of clustered fingerprint 2 (n=122), a Beijing family cluster, revealed geographic clustering among cases based on their report of bus use. Univariate and multivariate analysis of routes reported by cases belonging to these clusters found that 10 of the 14 clusters were associated with use. Individual Metro routes, including one route servicing the local hospitals, were found to be risk factors for belonging to a cluster shown to be endemic in Houston. The routes themselves geographically connect the census tracts previously identified as having endemic TB. 78% (15/23) of Houston Metro routes investigated had one or more print groups reporting frequent use for every HTI study year. We present data on three specific but clonally related print groups and show that bus-use is clustered in time by route and is the only known link between cases in one of the three prints: print 22. (Abstract shortened by UMI.)^
Resumo:
Mechanisms that allow pathogens to colonize the host are not the product of isolated genes, but instead emerge from the concerted operation of regulatory networks. Therefore, identifying components and the systemic behavior of networks is necessary to a better understanding of gene regulation and pathogenesis. To this end, I have developed systems biology approaches to study transcriptional and post-transcriptional gene regulation in bacteria, with an emphasis in the human pathogen Mycobacterium tuberculosis (Mtb). First, I developed a network response method to identify parts of the Mtb global transcriptional regulatory network utilized by the pathogen to counteract phagosomal stresses and survive within resting macrophages. As a result, the method unveiled transcriptional regulators and associated regulons utilized by Mtb to establish a successful infection of macrophages throughout the first 14 days of infection. Additionally, this network-based analysis identified the production of Fe-S proteins coupled to lipid metabolism through the alkane hydroxylase complex as a possible strategy employed by Mtb to survive in the host. Second, I developed a network inference method to infer the small non-coding RNA (sRNA) regulatory network in Mtb. The method identifies sRNA-mRNA interactions by integrating a priori knowledge of possible binding sites with structure-driven identification of binding sites. The reconstructed network was useful to predict functional roles for the multitude of sRNAs recently discovered in the pathogen, being that several sRNAs were postulated to be involved in virulence-related processes. Finally, I applied a combined experimental and computational approach to study post-transcriptional repression mediated by small non-coding RNAs in bacteria. Specifically, a probabilistic ranking methodology termed rank-conciliation was developed to infer sRNA-mRNA interactions based on multiple types of data. The method was shown to improve target prediction in Escherichia coli, and therefore is useful to prioritize candidate targets for experimental validation.
Resumo:
The overarching goal of the Pathway Semantics Algorithm (PSA) is to improve the in silico identification of clinically useful hypotheses about molecular patterns in disease progression. By framing biomedical questions within a variety of matrix representations, PSA has the flexibility to analyze combined quantitative and qualitative data over a wide range of stratifications. The resulting hypothetical answers can then move to in vitro and in vivo verification, research assay optimization, clinical validation, and commercialization. Herein PSA is shown to generate novel hypotheses about the significant biological pathways in two disease domains: shock / trauma and hemophilia A, and validated experimentally in the latter. The PSA matrix algebra approach identified differential molecular patterns in biological networks over time and outcome that would not be easily found through direct assays, literature or database searches. In this dissertation, Chapter 1 provides a broad overview of the background and motivation for the study, followed by Chapter 2 with a literature review of relevant computational methods. Chapters 3 and 4 describe PSA for node and edge analysis respectively, and apply the method to disease progression in shock / trauma. Chapter 5 demonstrates the application of PSA to hemophilia A and the validation with experimental results. The work is summarized in Chapter 6, followed by extensive references and an Appendix with additional material.