6 resultados para Computational Geometry and Object Modelling
em DigitalCommons@The Texas Medical Center
Resumo:
Chondrocyte gene regulation is important for the generation and maintenance of cartilage tissues. Several regulatory factors have been identified that play a role in chondrogenesis, including the positive transacting factors of the SOX family such as SOX9, SOX5, and SOX6, as well as negative transacting factors such as C/EBP and delta EF1. However, a complete understanding of the intricate regulatory network that governs the tissue-specific expression of cartilage genes is not yet available. We have taken a computational approach to identify cis-regulatory, transcription factor (TF) binding motifs in a set of cartilage characteristic genes to better define the transcriptional regulatory networks that regulate chondrogenesis. Our computational methods have identified several TFs, whose binding profiles are available in the TRANSFAC database, as important to chondrogenesis. In addition, a cartilage-specific SOX-binding profile was constructed and used to identify both known, and novel, functional paired SOX-binding motifs in chondrocyte genes. Using DNA pattern-recognition algorithms, we have also identified cis-regulatory elements for unknown TFs. We have validated our computational predictions through mutational analyses in cell transfection experiments. One novel regulatory motif, N1, found at high frequency in the COL2A1 promoter, was found to bind to chondrocyte nuclear proteins. Mutational analyses suggest that this motif binds a repressive factor that regulates basal levels of the COL2A1 promoter.
Resumo:
Visual working memory (VWM) involves maintaining and processing visual information, often for the purpose of making immediate decisions. Neuroimaging experiments of VWM provide evidence in support of a neural system mainly involving a fronto-parietal neuronal network, but the role of specific brain areas is less clear. A proposal that has recently generated considerable debate suggests that a dissociation of object and location VWM occurs within the prefrontal cortex, in dorsal and ventral regions, respectively. However, re-examination of the relevant literature presents a more robust distribution suggestive of a general caudal-rostral dissociation from occipital and parietal structures, caudally, to prefrontal regions, rostrally, corresponding to location and object memory, respectively. The purpose of the present study was to identify a dissociation of location and object VWM across two imaging methods (magnetoencephalography, MEG, and functional magnetic imaging, fMRI). These two techniques provide complimentary results due the high temporal resolution of MEG and the high spatial resolution of fMRI. The use of identical location and object change detection tasks was employed across techniques and reported for the first time. Moreover, this study is the first to use matched stimulus displays across location and object VWM conditions. The results from these two imaging methods provided convergent evidence of a location and object VWM dissociation favoring a general caudal-rostral rather than the more common prefrontal dorsal-ventral view. Moreover, neural activity across techniques was correlated with behavioral performance for the first time and provided convergent results. This novel approach of combining imaging tools to study memory resulted in robust evidence suggesting a novel interpretation of location and object memory. Accordingly, this study presents a novel context within which to explore the neural substrates of WM across imaging techniques and populations.
Resumo:
Adult monkeys (Macaca mulatta) with lesions of the hippocampal formation, perirhinal cortex, areas TH/TF, as well as controls were tested on tasks of object, spatial and contextual recognition memory. ^ Using a visual paired-comparison (VPC) task, all experimental groups showed a lack of object recognition relative to controls, although this impairment emerged at 10 sec with perirhinal lesions, 30 sec with areas TH/TF lesions and 60 sec with hippocampal lesions. In contrast, only perirhinal lesions impaired performance on delayed nonmatching-to-sample (DNMS), another task of object recognition memory. All groups were tested on DNMS with distraction (dDNMS) to examine whether the use of active cognitive strategies during the delay period could enable good performance on DNMS in spite of impaired recognition memory (revealed by the VPC task). Distractors affected performance of animals with perirhinal lesions at the 10-sec delay (the only delay in which their DNMS performance was above chance). They did not affect performance of animals with areas TH/TF lesions. Hippocampectomized animals were impaired at the 600-sec delay (the only delay at which prevention of active strategies would likely affect their behavior). ^ While lesions of areas TH/TF impaired spatial location memory and object-in-place memory, hippocampal lesions impaired only object-in-place memory. The pattern of results for perirhinal cortex lesions on the different task conditions indicated that this cortical area is not critical for spatial memory. ^ Finally, all three lesions impaired contextual recognition memory processes. The pattern of impairment appeared to result from the formation of only a global representation of the object and background, and suggests that all three areas are recruited for associating information across sources. ^ These results support the view that (1) the perirhinal cortex maintains storage of information about object and the context in which it is learned for a brief period of time, (2) areas TH/TF maintain information about spatial location and form associations between objects and their spatial relationship (a process that likely requires additional time) and (3) the hippocampal formation mediates associations between objects, their spatial relationship and the general context in which these associations are formed (an integrative function that requires additional time). ^
Resumo:
Academic and industrial research in the late 90s have brought about an exponential explosion of DNA sequence data. Automated expert systems are being created to help biologists to extract patterns, trends and links from this ever-deepening ocean of information. Two such systems aimed on retrieving and subsequently utilizing phylogenetically relevant information have been developed in this dissertation, the major objective of which was to automate the often difficult and confusing phylogenetic reconstruction process. ^ Popular phylogenetic reconstruction methods, such as distance-based methods, attempt to find an optimal tree topology (that reflects the relationships among related sequences and their evolutionary history) by searching through the topology space. Various compromises between the fast (but incomplete) and exhaustive (but computationally prohibitive) search heuristics have been suggested. An intelligent compromise algorithm that relies on a flexible “beam” search principle from the Artificial Intelligence domain and uses the pre-computed local topology reliability information to adjust the beam search space continuously is described in the second chapter of this dissertation. ^ However, sometimes even a (virtually) complete distance-based method is inferior to the significantly more elaborate (and computationally expensive) maximum likelihood (ML) method. In fact, depending on the nature of the sequence data in question either method might prove to be superior. Therefore, it is difficult (even for an expert) to tell a priori which phylogenetic reconstruction method—distance-based, ML or maybe maximum parsimony (MP)—should be chosen for any particular data set. ^ A number of factors, often hidden, influence the performance of a method. For example, it is generally understood that for a phylogenetically “difficult” data set more sophisticated methods (e.g., ML) tend to be more effective and thus should be chosen. However, it is the interplay of many factors that one needs to consider in order to avoid choosing an inferior method (potentially a costly mistake, both in terms of computational expenses and in terms of reconstruction accuracy.) ^ Chapter III of this dissertation details a phylogenetic reconstruction expert system that selects a superior proper method automatically. It uses a classifier (a Decision Tree-inducing algorithm) to map a new data set to the proper phylogenetic reconstruction method. ^
Organization of the inferotemporal cortex in the macaque monkey: Connections of areas PITv and CITvp
Resumo:
Visual cortex of macaque monkeys consists of a large number of cortical areas that span the occipital, parietal, temporal, and frontal lobes and occupy more than half of cortical surface. Although considerable progress has been made in understanding the contributions of many occipital areas to visual perceptual processing, much less is known concerning the specific functional contributions of higher areas in the temporal and frontal lobes. Previous behavioral and electrophysiological investigations have demonstrated that the inferotemporal cortex (IT) is essential to the animal's ability to recognize and remember visual objects. While it is generally recognized that IT consists of a number of anatomically and functionally distinct visual-processing areas, there remains considerable controversy concerning the precise number, size, and location of these areas. Therefore, the precise delineation of the cortical subdivisions of inferotemporal cortex is critical for any significant progress in the understanding of the specific contributions of inferotemporal areas to visual processing. In this study, anterograde and/or retrograde neuroanatomical tracers were injected into two visual areas in the ventral posterior and central portions of IT (areas PITv and CITvp) to elucidate the corticocortical connections of these areas with well known areas of occipital cortex and with less well understood regions of inferotemporal cortex. The locations of injection sites and the delineation of the borders of many occipital areas were aided by the pattern of interhemispheric connections, revealed following callosal transection and subsequent labeling with HRP. The resultant patterns of connections were represented on two-dimensional computational (CARET) and manual cortical maps and the laminar characteristics and density of the projection fields were quantified. The laminar and density features of these corticocortical connections demonstrate thirteen anatomically distinct subdivisions or areas distributed within the superior temporal sulcus and across the inferotemporal gyrus. These results serve to refine previous descriptions of inferotemporal areas, validate recently identified areas, and provide a new description of the hierarchical relationships among occipitotemporal cortical areas in macaques. ^
Resumo:
Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.