4 resultados para Columns, Doric.

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Longitudinal in vivo proton magnetic resonance spectroscopy (1H-MRS) and immunohistochemistry were performed to investigate the tissue degeneration in traumatically injured rat spinal cord rostral and caudal to the lesion epicenter. On 1H-MRS significant decreases in N-acetyl aspartate (NAA) and total creatine (Cr) levels in the rostral, epicenter, and caudal segments were observed by 14 days, and levels remained depressed up to 56 days post-injury (PI). In contrast, the total choline (Cho) levels increased significantly in all three segments by 14 days PI, but recovered in the epicenter and caudal, but not the rostral region, at 56 days PI. Immunohistochemistry demonstrated neuronal cell death in the gray matter, and reactive astrocytes and axonal degeneration in the dorsal, lateral, and ventral white-matter columns. These results suggest delayed tissue degeneration in regions both rostrally and caudally from the epicenter in the injured spinal cord tissue. A rostral-caudal asymmetry in tissue recovery was seen both on MRI-observed hyperintense lesion volume and the Cho, but not NAA and Cr, levels at 56 days PI. These studies suggest that dynamic metabolic changes take place in regions away from the epicenter in injured spinal cord.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

V2 has long been recognized to contain functionally distinguishable compartments that are correlated with the stripelike pattern of cytochrome oxidase activity. Early electrophysiological studies suggested that color, direction/disparity, and orientation selectivity were largely segregated in the thin, thick, and interstripes, respectively. Subsequent studies revealed a greater degree of homogeneity in the distribution of response properties across stripes, yet color-selective cells were still found to be most prevalent in the thin stripes. Optical recording studies have demonstrated that thin stripes contain both color-preferring and luminance-preferring modules. These thin stripe color-preferring modules contain spatially organized hue maps, whereas the luminance-preferring modules contain spatially organized luminance-change maps. In this study, the neuronal basis of these hue maps was determined by characterizing the selectivity of neurons for isoluminant hues in multiple penetrations within previously characterized V2 thin stripe hue maps. The results indicate that neurons within the superficial layers of V2 thin stripe hue maps are organized into columns whose aggregated hue selectivity is closely related to the hue selectivity of the optically defined hue maps. These data suggest that thin stripes contain hue maps not simply because of their moderate percentage of hue-selective neurons, but because of the columnar and tangential organization of hue selectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to examine the relationship of immunoglobulin genes, more specifically the C regions, to the inverted repetitive sequences found in the mouse genome. Total mRNA as well as mRNA for light chain kappa was purified from mouse plasmacytoma MOPC 321 cells. Complementary DNA molecules were synthesized from the mRNA templates and hybridized to DNA fractionated on hydroxyapatite columns. This fractionation separates DNA according to the presence of inverted repetitive sequences which will be retained by hydroxyapatite while the remaining fraction will be unbound.^ The results obtained during the course of this investigation suggested the following conclusions. Firstly, it was shown that inverted sequences were not found within the transcribed DNA region. Secondly, inverted sequences are not found within the kappa gene. And finally, it was shown that the inverted sequences may not be representative of all the sequences found in MOPC 321 DNA. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agrobacterium tumefaciens is a plant pathogen with the unique ability to export oncogenic DNA-protein complexes (T-complexes) to susceptible plant cells and cause crown gall tumors. Delivery of the T-complexes across the bacterial membranes requires eleven VirB proteins and VirD4, which are postulated to form a transmembrane transporter. This thesis examines the subcellular localization and oligomeric structure of the 87-kDa VirB4 protein, which is one of three essential ATPases proposed to energize T-complex transport and/or assembly. Results of subcellular localization studies showed that VirB4 is tightly associated with the cytoplasmic membrane, suggesting that it is a membrane-spanning protein. The membrane topology of VirB4 was determined by using a nested deletion strategy to generate random fusions between virB4 and the periplasmically-active alkaline phosphatase, $\sp\prime phoA$. Analysis of PhoA and complementary $\beta$-galactosidase reporter fusions identified two putative periplasmically-exposed regions in VirB4. A periplasmic exposure of one of these regions was further confirmed by protease susceptibility assays using A. tumefaciens spheroplasts. To gain insight into the structure of the transporter, the topological configurations of other VirB proteins were also examined. Results from hydropathy analyses, subcellular localization, protease susceptibility, and PhoA reporter fusion studies support a model that all of the VirB proteins localize at one or both of the bacterial membranes. Immunoprecipitation and Co$\sp{2+}$ affinity chromatography studies demonstrated that native VirB4 (87-kDa) and a functional N-terminally tagged HIS-VirB4 derivative (89-kDa) interact and that the interaction is independent of other VirB proteins. A $\lambda$ cI repressor fusion assay supplied further evidence for VirB4 dimer formation. A VirB4 dimerization domain was localized to the N-terminal third of the protein, as judged by: (i) transdominance of an allele that codes for this region of VirB4; (ii) co-retention of a His-tagged N-terminal truncation derivative and native VirB4 on Co$\sp{2+}$ affinity columns; and (iii) dimer formation of the N-terminal third of VirB4 fused to the cI repressor protein. Taken together, these findings are consistent with a model that VirB4 is topologically configured as an integral cytoplasmic membrane protein with two periplasmic domains and that VirB4 assembles as homodimers via an N-terminal dimerization domain. Dimer formation is postulated to be essential for stabilization of VirB4 monomers during T-complex transporter assembly. ^