5 resultados para Coal industry and commercial and public interests
em DigitalCommons@The Texas Medical Center
Resumo:
The traditional American dream of owning a home, obtaining a college education, and working at a good, paying job is only that, a dream, for scores of homeless youth in America today. There is a growing street population of young people who have been thrown out of their homes by their caretakers or their families, and who face life-threatening situations each day. For these youth, the furthest thing in their lives is reaching the so-called “American Dream;” and their most immediate need is survival, simply living out the day in front of them. They have few options that lead to a decent and safe living environment. Their age, lack of work experience, and absence of a high school diploma make it most difficult to find a job. As a result, they turn to other means for survival; runaways and throwaways are most vulnerable to falling prey to the sex trade, selling drugs, or being lured into human trafficking, and some steal or panhandle. Street youth end up spending their nights in bus stations or finding a room in an abandoned building or an empty stairwell to sleep. Attempting to identify a specific number of homeless youth is difficult at best, but what is even more perplexing is our continued inability to effectively protect our children. We are left with a basic question framed by the fundamental tenets of justice: what is a community’s responsibility to its youth who, for whatever reason, end up living on the streets or in unsafe, abusive environments? The purpose of this paper is to briefly outline the characteristics of homeless youth, in particular differentiating between throwaways and runaways; explore the current federal response to homeless youth; and finally, address the nagging question that swirls around all children: can we aggressively aspire to be a community where every child is healthy and safe, and able to realize his or her fullest potential?
Resumo:
Introduction. The HIV/AIDS disease burden disproportionately affects minority populations, specifically African Americans. While sexual risk behaviors play a role in the observed HIV burden, other factors including gender, age, socioeconomics, and barriers to healthcare access may also be contributory. The goal of this study was to determine how far down the HIV/AIDS disease process people of different ethnicities first present for healthcare. The study specifically analyzed the differences in CD4 cell counts at the initial HIV-1 diagnosis with respect to ethnicity. The study also analyzed racial differences in HIV/AIDS risk factors. ^ Methods. This is a retrospective study using data from the Adult Spectrum of HIV Disease (ASD), collected by the City of Houston Department of Health. The ASD database contains information on newly reported HIV cases in the Harris County District Hospitals between 1989 and 2000. Each patient had an initial and a follow-up report. The extracted variables of interest from the ASD data set were CD4 counts at the initial HIV diagnosis, race, gender, age at HIV diagnosis and behavioral risk factors. One-way ANOVA was used to examine differences in baseline CD4 counts at HIV diagnosis between racial/ethnic groups. Chi square was used to analyze racial differences in risk factors. ^ Results. The analyzed study sample was 4767. The study population was 47% Black, 37% White and 16% Hispanic [p<0.05]. The mean and median CD4 counts at diagnosis were 254 and 193 cells per ml, respectively. At the initial HIV diagnosis Blacks had the highest average CD4 counts (285), followed by Whites (233) and Hispanics (212) [p<0.001 ]. These statistical differences, however, were only observed with CD4 counts above 350 [p<0.001], even when adjusted for age at diagnosis and gender [p<0.05]. Looking at risk factors, Blacks were mostly affected by intravenous drug use (IVDU) and heterosexuality, whereas Whites and Hispanics were more affected by male homosexuality [ p<0.05]. ^ Conclusion. (1) There were statistical differences in CD4 counts with respect to ethnicity, but these differences only existed for CD4 counts above 350. These differences however do not appear to have clinical significance. Antithetically, Blacks had the highest CD4 counts followed by Whites and Hispanics. (2) 50% of this study group clinically had AIDS at their initial HIV diagnosis (median=193), irrespective of ethnicity. It was not clear from data analysis if these observations were due to failure of early HIV surveillance, HIV testing policies or healthcare access. More studies need to be done to address this question. (3) Homosexuality and bisexuality were the biggest risk factors for Whites and Hispanics, whereas for Blacks were mostly affected by heterosexuality and IVDU, implying a need for different public health intervention strategies for these racial groups. ^
Resumo:
Objectives. The objectives of this report were to describe current best standards in online education, class competencies, class objectives, class activities and to compare the class competencies, objectives and activities undertaken with the current best practices in online teaching and to provide a list of recommendations based on the most efficacious practices. ^ Methods. Utilizing the key words- online teaching, national standards, quality, online courses, I: (1) conducted a search on Google to find the best standard for quality online courses; the search yielded National Standards for Quality Online Teaching as the gold standard in online course quality; (2) specified class objectives and competencies as well as major activities undertaken as a part of the class. Utilizing the Southern Regional Education Board evaluation checklist for online courses, I: (1) performed an analysis comparing the class activities, objectives, and competencies with the current best standards; (2) utilized the information obtained from the analysis and class experiences to develop recommendations for the most efficacious online teaching practices. ^ Results. The class met the criteria set by the Southern Regional Education Board for evaluating online classes completely in 75%, partially in 16% and did not meet the criteria in 9% cases. The majority of the parameters in which the class did not meet the standards (4 of 5) were due to technological reasons beyond the scope of the class instructor, teaching assistant and instructional design. ^ Discussion. Successful online teaching requires awareness of technology, good communication, methods, collaboration, reflection and flexibility. Creation of an online community, engaging online learners and utilizing different learning styles and assessment methods promote learning. My report proposes that online teaching should actively engage the students and teachers with multiple interactive strategies as evidenced from current best standards of online education and my “hands-on” work experience. ^ Conclusion. The report and the ideas presented are intended to create a foundation for efficacious practice on the online teaching platform. By following many of the efficacious online practices described in the report and adding from their own experiences, online instructors and teaching assistants can contribute to effective online learning. ^
Resumo:
To reach the goals established by the Institute of Medicine (IOM) and the Centers for Disease Control's (CDC) STOP TB USA, measures must be taken to curtail a future peak in Tuberculosis (TB) incidence and speed the currently stagnant rate of TB elimination. Both efforts will require, at minimum, the consideration and understanding of the third dimension of TB transmission: the location-based spread of an airborne pathogen among persons known and unknown to each other. This consideration will require an elucidation of the areas within the U.S. that have endemic TB. The Houston Tuberculosis Initiative (HTI) was a population-based active surveillance of confirmed Houston/Harris County TB cases from 1995–2004. Strengths in this dataset include the molecular characterization of laboratory confirmed cases, the collection of geographic locations (including home addresses) frequented by cases, and the HTI time period that parallels a decline in TB incidence in the United States (U.S.). The HTI dataset was used in this secondary data analysis to implement a GIS analysis of TB cases, the locations frequented by cases, and their association with risk factors associated with TB transmission. ^ This study reports, for the first time, the incidence of TB among the homeless in Houston, Texas. The homeless are an at-risk population for TB disease, yet they are also a population whose TB incidence has been unknown and unreported due to their non-enumeration. The first section of this dissertation identifies local areas in Houston with endemic TB disease. Many Houston TB cases who reported living in these endemic areas also share the TB risk factor of current or recent homelessness. Merging the 2004–2005 Houston enumeration of the homeless with historical HTI surveillance data of TB cases in Houston enabled this first-time report of TB risk among the homeless in Houston. The homeless were more likely to be US-born, belong to a genotypic cluster, and belong to a cluster of a larger size. The calculated average incidence among homeless persons was 411/100,000, compared to 9.5/100,000 among housed. These alarming rates are not driven by a co-infection but by social determinants. The unsheltered persons were hospitalized more days and required more follow-up time by staff than those who reported a steady housing situation. The homeless are a specific example of the increased targeting of prevention dollars that could occur if TB rates were reported for specific areas with known health disparities rather than as a generalized rate normalized over a diverse population. ^ It has been estimated that 27% of Houstonians use public transportation. The city layout allows bus routes to run like veins connecting even the most diverse of populations within the metropolitan area. Secondary data analysis of frequent bus use (defined as riding a route weekly) among TB cases was assessed for its relationship with known TB risk factors. The spatial distribution of genotypic clusters associated with bus use was assessed, along with the reported routes and epidemiologic-links among cases belonging to the identified clusters. ^ TB cases who reported frequent bus use were more likely to have demographic and social risk factors associated with poverty, immune suppression and health disparities. An equal proportion of bus riders and non-bus riders were cultured for Mycobacterium tuberculosis, yet 75% of bus riders were genotypically clustered, indicating recent transmission, compared to 56% of non-bus riders (OR=2.4, 95%CI(2.0, 2.8), p<0.001). Bus riders had a mean cluster size of 50.14 vs. 28.9 (p<0.001). Second order spatial analysis of clustered fingerprint 2 (n=122), a Beijing family cluster, revealed geographic clustering among cases based on their report of bus use. Univariate and multivariate analysis of routes reported by cases belonging to these clusters found that 10 of the 14 clusters were associated with use. Individual Metro routes, including one route servicing the local hospitals, were found to be risk factors for belonging to a cluster shown to be endemic in Houston. The routes themselves geographically connect the census tracts previously identified as having endemic TB. 78% (15/23) of Houston Metro routes investigated had one or more print groups reporting frequent use for every HTI study year. We present data on three specific but clonally related print groups and show that bus-use is clustered in time by route and is the only known link between cases in one of the three prints: print 22. (Abstract shortened by UMI.)^