5 resultados para Clupea harengus, total length
em DigitalCommons@The Texas Medical Center
Resumo:
Introduction. This study is a two-part evaluation of the RightCare policy, a policy implemented to reduce crowding at the Emergency Center (EC) at Ben Taub General Hospital in Houston, Harris County, Texas. This research includes an evaluation of the policy's impact on specific hospital measures, along with a description of the policy's demise from the point of view of hospital staff. Objective. The purpose of this study is two-fold: (1) To determine whether RightCare policy affected the level of crowding in the Emergency Center and (2) to identify the conditions that may have led to the policy's demise. Methods. For the policy impact portion of this research, hospital measures were collected from existing databases. Analysis included a pre-post comparative design in which the 12 months preceding the policy's implementation were compared with the 12 months following the policy's implementation. For the policy perception portion, employees were surveyed using an on-line questionnaire. Results. The results of the study are mixed. Some measures improved, including time spent on ambulance diversion and the proportion of those who left without being seen, while others did not, such as return visits and total length of stay. Employees generally supported the policy, but expressed concerns over insufficient training and funding. Conclusion. The RightCare policy was a good initial attempt to improve crowded conditions in the EC. The study showed that a clearer policy design, improved training, adequate staffing levels, and better communication would improve operational outcomes in the future.^
Resumo:
The purpose of this study was to determine if race/ethnicity was a significant risk factor for hospital mortality in children following congenital heart surgery in a contemporary sample of newborns with congenital heart disease. Unlike previous studies that utilized administrative databases, this study utilized clinical data collected at the point of care to examine racial/ethnic outcome differences in the context of the patients' clinical condition and their overall perioperative experience. A retrospective cohort design was used. The study sample consisted of 316 newborns (<31 days of age) who underwent congenital heart surgery between January 2007 through December 2009. A multivariate logistic regression model was used to determine the impact of race/ethnicity, insurance status, presence of a spatial anomaly, prenatal diagnosis, postoperative sepsis, cardiac arrest, respiratory failure, unplanned reoperation, and total length of stay in the intensive care unit on outcomes following congenital heart surgery in newborns. The study findings showed that the strongest predictors of hospital mortality following congenital heart surgery in this cohort were postoperative cardiac arrest, postoperative respiratory failure, having a spatial anomaly, and total ICU LOS. Race/ethnicity and insurance status were not significant risk factors. The institution where this study was conducted is designated as a center of excellence for congenital heart disease. These centers have state-of-the-art facilities, extensive experience in caring for children with congenital heart disease, and superior outcomes. This study suggests that optimal care delivery for newborns requiring congenital heart surgery at a center of excellence portends exceptional outcomes and this benefit is conferred upon the entire patient population despite the race/ethnicity of the patients. From a public health and health services view, this study also contributes to the overall body of knowledge on racial/ethnic disparities in children with congenital heart defects and puts forward the possibility of a relationship between quality of care and racial/ethnic disparities. Further study is required to examine the impact of race/ethnicity on the long-term outcomes of these children as they encounter the disparate components of the health care delivery system. There is also opportunity to study the role of race/ethnicity on the hospital morbidity in these patients considering current expectations for hospital survival are very high, and much of the current focus for quality improvement rests in minimizing the development of patient morbidities.^
Resumo:
My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screening designs to provide more efficient and ethical clinical trials, and (3) incorporating missing late-onset responses to make an early stopping decision. Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a phase I/II trial design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multi-arm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while at the same time allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while at the same time providing higher power to identify the best treatment at the end of the trial. Phase II trial studies usually are single-arm trials which are conducted to test the efficacy of experimental agents and decide whether agents are promising to be sent to phase III trials. Interim monitoring is employed to stop the trial early for futility to avoid assigning unacceptable number of patients to inferior treatments. We propose a Bayesian single-arm phase II design with continuous monitoring for estimating the response rate of the experimental drug. To address the issue of late-onset responses, we use a piece-wise exponential model to estimate the hazard function of time to response data and handle the missing responses using the multiple imputation approach. We evaluate the operating characteristics of the proposed method through extensive simulation studies. We show that the proposed method reduces the total length of the trial duration and yields desirable operating characteristics for different physician-specified lower bounds of response rate with different true response rates.
Resumo:
Better morbidity and mortality outcomes associated with increased hospital procedural volume have been demonstrated across a number of different medical procedures. Existence of such a volume-outcome relationship is posited to lead to increased specialization of care, such that patients requiring specific procedures are funneled to physicians and hospitals that achieve a minimum volume of such procedures each year. In this study, the 2009 Nationwide Inpatient Sample is used to examine the relationship between hospital volume and patient outcome among patients undergoing procedures related to malignant brain cancer. Multiple regression models were used to examine the impact of hospital volume on length of inpatient stay and cost of inpatient stay; logistic regression was used to examine the impact of hospital volume on morbidity. Hospital volume was found to be a significant predictor of both length of stay and cost of stay. Hospital volume was associated with a lower length of stay, but was also associated with increased costs. Hospital volume was not found to be a statistically significant predictor of morbidity, though less than three percent of this sample died while in the hospital. Volume is indeed a significant predictor of outcome for procedures related to brain malignancies, though further research regarding the cost of such procedures is recommended.^
Resumo:
Coronary artery bypass graft (CABG) surgery is among the most common operations performed in the United States and accounts for more resources expended in cardiovascular medicine than any other single procedure. CABG surgery patients initially recover in the Cardiovascular Intensive Care Unit (CVICU). The post-procedure CVICU length of stay (LOS) goal is two days or less. A longer ICU LOS is associated with a prolonged hospital LOS, poor health outcomes, greater use of limited resources, and increased medical costs. ^ Research has shown that experienced clinicians can predict LOS no better than chance. Current CABG surgery LOS risk models differ greatly in generalizability and ease of use in the clinical setting. A predictive model that identified modifiable pre- and intra-operative risk factors for CVICU LOS greater than two days could have major public health implications as modification of these identified factors could decrease CVICU LOS and potentially minimize morbidity and mortality, optimize use of limited health care resources, and decrease medical costs. ^ The primary aim of this study was to identify modifiable pre-and intra-operative predictors of CVICU LOS greater than two days for CABG surgery patients with cardiopulmonary bypass (CPB). A secondary aim was to build a probability equation for CVICU LOS greater than two days. Data were extracted from 416 medical records of CABG surgery patients with CPB, 50 to 80 years of age, recovered in the CVICU of a large teaching, referral hospital in southeastern Texas, during the calendar year 2004 and the first quarter of 2005. Exclusion criteria included Diagnosis Related Group (DRG) 106, CABG surgery without CPB, CABG surgery with other procedures, and operative deaths. The data were analyzed using multivariate logistic regression for an alpha=0.05, power=0.80, and correlation=0.26. ^ This study found age, history of peripheral arterial disease, and total operative time equal to and greater than four hours to be independent predictors of CVICU LOS greater than two days. The probability of CVICU LOS greater than two days can be calculated by the following equation: -2.872941 +.0323081 (age in years) + .8177223 (history of peripheral arterial disease) + .70379 (operative time). ^