28 resultados para Clean development mechanism projects

em DigitalCommons@The Texas Medical Center


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cell differentiation and pattern formation are fundamental processes in animal development that are under intense investigation. The mouse retina is a good model to study these processes because it has seven distinct cell types, and three well-laminated nuclear layers that form during embryonic and postnatal life. β-catenin functions as both the nuclear effector for the canonical Wnt pathway and a cell adhesion molecule, and is required for the development of various organs. To study the function of β-catenin in retinal development, I used a Cre-loxP system to conditionally ablate β-catenin in the developing retina. Deletion of β-catenin led to disrupted laminar structure but did not affect the differentiation of any of the seven cell types. Eliminating β-catenin did not reduce progenitor cell proliferation, although enhanced apoptosis was observed. Further analysis showed that disruption of cell adhesion was the major cause of the observed patterning defects. Overexpression of β-catenin during retinal development also disrupted the normal retinal lamination and caused a transdifferentiation of neurons into pigmented cells. The results indicate that β-catenin functions as a cell adhesion molecule but not as a Wnt pathway component during retinal neurogenesis, and is essential for lamination but not cell differentiation. The results further imply that retinal lamination and cell differentiation are genetically separable processes. ^ Sonic hedgehog (shh) is expressed in retinal ganglion cells under the control of transcription factor Pou4f2 during retinal development. Previous studies identified a phylogenetically conserved region in the first intron of shh containing a Pou4f2 binding site. Transgenic reporter mice in which reporter gene expression was driven by this region showed that this element can direct gene expression specifically in the retina, but expression was not limited to the ganglion cells. From these data I hypothesized that this element is required for shh expression in the retina but is not sufficient for specific ganglion cell expression. To further test this hypothesis, I created a conditional allele by flanking this region with two loxP sites. Lines carrying this allele will be crossed with retinal-specific Cre lines to remove this element in the retina. My hypothesis predicts that alteration in shh expression and subsequent retinal defects will occur in the retinas of these mice. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment of central nervous system (CNS) diseases is limited by the blood-brain barrier (BBB), a selective vascular interface restricting passage of most molecules from blood into brain. Specific transport systems have evolved allowing circulating polar molecules to cross the BBB and gain access to the brain parenchyma. However, to date, few ligands exploiting such systems have proven clinically viable in the setting of CNS diseases. We reasoned that combinatorial phage-display screenings in vivo would yield peptides capable of crossing the BBB and allow for the development of ligand-directed targeting strategies of the brain. Here we show the identification of a peptide mediating systemic targeting to the normal brain and to an orthotopic human glioma model. We demonstrate that this peptide functionally mimics iron through an allosteric mechanism and that a non-canonical association of (i) transferrin, (ii) the iron-mimic ligand motif, and (iii) transferrin receptor mediates binding and transport of particles across the BBB. We also show that in orthotopic human glioma xenografts, a combination of transferrin receptor over-expression plus extended vascular permeability and ligand retention result in remarkable brain tumor targeting. Moreover, such tumor targeting attributes enables Herpes simplex virus thymidine kinase-mediated gene therapy of intracranial tumors for molecular genetic imaging and suicide gene delivery with ganciclovir. Finally, we expand our data by analyzing a large panel of primary CNS tumors through comprehensive tissue microarrays. Together, our approach and results provide a translational avenue for the detection and treatment of brain tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental exposures during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life in a process known as developmental reprogramming. We have shown that neonatal exposure to the xenoestrogen diethylstilbestrol (DES) can developmentally reprogram the reproductive tract in genetically susceptible Eker rats giving rise to complete penetrance of uterine leiomyoma. Based on this, we hypothesized that xenoestrogens, including genistein (GEN) and bisphenol A (BPA), reprogram estrogen-responsive gene expression in the myometrium and promote the development of uterine leiomyoma. We proposed the mechanism that is responsible for the developmental reprogramming of gene expression was through estrogen (E2)/ xenoestrogen inducedrapid ER signaling, which modifies the histone methyltransferase Enhancer of Zeste homolog 2 (EZH2) via activation of the PI3K/AKT pathway. We further hypothesized that there is a xenostrogen-specific effect on this pathway altering patterns of histone modification, DNA methylation and gene expression. In addition to our novel finding that E2/DES-induced phosphorylation of EZH2 by AKT reduces the levels of H3K27me3 in vitro and in vivo, this work demonstrates in vivo that a brief neonatal exposure to GEN, in contrast to BPA, activates the PI3K/AKT pathway to regulate EZH2 and decreases H3K27me3 levels in the neonatal uterus. Given that H3K27me3 is a repressive mark that has been shown to result in DNA methylation and gene silencing we investigated the methylation of developmentally reprogrammed genes. In support of this evidence, we show that neonatal DES exposure in comparison to VEH, leads to hypomethylation of the promoter of a developmentally reprogrammed gene, Gria2, that become hyper-responsive to estrogen in the adult myometrium indicating vi that DES exposure alter gene expression via chromatin remodeling and loss of DNA methylation. In the adult uterus, GEN and BPA exposure developmentally reprogrammed expression of estrogen-responsive genes in a manner opposite of one another, correlating with our previous data. Furthermore, the ability of GEN and BPA to developmental reprogram gene expression correlated with tumor incidence and multiplicity. These data show that xenoestrogens have unique effects on the activation of non-genomic signaling in the developing uterus that promotes epigenetic and genetic alterations, which are predictive of developmental reprogramming and correlate with their ability to modulate hormone-dependent tumor development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transforming growth factor-b (TGF-b) is a cytokine that plays essential roles in regulating embryonic development and tissue homeostasis. In normal cells, TGF-b exerts an anti-proliferative effect. TGF-b inhibits cell growth by controlling a cytostatic program that includes activation of the cyclin-dependent kinase inhibitors p15Ink4B and p21WAF1/Cip1 and repression of c-myc. In contrast to normal cells, many tumors are resistant to the anti-proliferative effect of TGF-b. In several types of tumors, particularly those of gastrointestinal origin, resistance to the anti-proliferative effect of TGF-b has been attributed to TGF-b receptor or Smad mutations. However, these mutations are absent from many other types of tumors that are resistant to TGF-b-mediated growth inhibition. The transcription factor encoded by the homeobox patterning gene DLX4 is overexpressed in a wide range of malignancies. In this study, I demonstrated that DLX4 blocks the anti-proliferative effect of TGF-b by disabling key transcriptional control mechanisms of the TGF-b cytostatic program. Specifically, DLX4 blocked the ability of TGF-b to induce expression of p15Ink4B and p21WAF1/Cip1 by directly binding to Smad4 and to Sp1. Binding of DLX4 to Smad4 prevented Smad4 from forming transcriptional complexes with Smad2 and Smad3, whereas binding of DLX4 to Sp1 inhibited DNA-binding activity of Sp1. In addition, DLX4 induced expression of c-myc, a repressor of p15Ink4B and p21WAF1/Cip1 transcription, independently of TGF-b signaling. The ability of DLX4 to counteract key transcriptional control mechanisms of the TGF-b cytostatic program could explain in part the resistance of tumors to the anti-proliferative effect of TGF-b. This study provides a molecular explanation as to why tumors are resistant to the anti-proliferative effect of TGF-b in the absence of mutations in the TGF-b signaling pathway. Furthermore, this study also provides insights into how aberrant activation of a developmental patterning gene promotes tumor pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMOylation has emerged as an important regulatory mechanism for protein function. SUMO-specific proteases (SENPs) are essential for removing SUMO from conjugated proteins in many different systems, but the physiological functions of SENPs are poorly understood. STAT5 (Signal Transducer and Activator of Transcription 5) plays a critical role in the development of lymphoid cells. However, it is not known whether STAT5 is regulated by the SUMOylation pathway. Here, we showed that SUMOylated STAT5 is accumulated in SENP1-/- lymphoid precursors. SENP1 deficiency results in severe defects in early T and B cell development, similar to that observed in mice harboring a complete inactivation of STAT5. Because STAT5 is SUMOylated and acetylated at the same lysine residue, SENP1 deficiency blocks STAT5 in the SUMOylation state, resulting in diminished STAT5 acetylation and phosphorylation, and defective lymphoid development. Thus, our results reveal a novel function of SENP1 in the regulation of early lymphoid development via an acetylation/SUMOylation switch in STAT5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human cancer develops as a result of accumulation of mutations in oncogenes and tumor suppressor genes. Zinc finger protein 668 (ZNF668) has recently been identified and validated as one of the highly mutated genes in breast cancer, but its function is entirely unknown. Here, we report two major functions of ZNF668 in cancer development. (1) ZNF668 functions as a tumor suppressor by regulating p53 protein stability and function. We demonstrate that ZNF668 is a nucleolar protein that physically interacts with both MDM2 and p53. By binding to MDM2, ZNF668 regulates MDM2 autoubiquitination and prevents MDM2-mediated p53 ubiquitination and degradation; ZNF668 deficiency impairs DNA damage-induced p53 stabilization. Notably, ZNF668 effectively suppresses breast cancer cell proliferation and transformation in vitro and tumorigenicity in vivo. Consistently, ZNF668 knockdown readily transforms normal mammary epithelial cells. Together, our studies identify ZNF668 as a novel breast tumor suppressor gene that acts at least in part by regulating the stability and function of p53. (2) ZNF668 functions as a DNA repair protein by regulating histone acetylation. DNA repair proteins need to access the chromatin by chromatin modification or remodeling to use DNA template within chromatin. Dynamic posttranslational modifications of histones are critical for cells to relax chromatin in DNA repair. However, the precise underlying mechanism mediating enzymes responsible for these modifications and their recruitment to DNA lesions remains poorly understood. We observed ZNF668 depletion causes impaired chromatin relaxation as a result of impaired DNA-damage induced histone H2AX hyper-acetylation. This results in the decreased recruitment of repair proteins to DNA lesions, defective homologous recombination (HR) repair and impaired cell survival after DNA damage, albeit with the presence of a functional ATM/ATR dependent DNA-damage signaling cascade. Importantly, the impaired loading of repair proteins and the defect in DNA repair in ZNF668-deficient cells can be counteracted by chromatin relaxation, indicating that the DNA-repair defect that was observed in the absence of ZNF668 is due to impeded chromatin accessibility at sites of DNA breaks. Our findings therefore identify ZNF668 as a key molecule that links chromatin relaxation with response to DNA damage in the control of DNA repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pancreatic cancer is the fourth leading cause of cancer-related mortality in the United States and the fifth leading cause of cancer-related mortality worldwide. Pancreatic cancer is a big challenge in large due to the lack of early symptoms. In addition, drug resistance is a major obstacle to the success of chemotherapy in pancreatic cancer. The underlying mechanism of drug resistance in human pancreatic cancers is not well understood. Better understanding of the mechanism of molecular pathways in human pancreatic cancers can help to identify the novel therapeutic target candidates, and develop the new preventive and clinic strategies to improve patient survival. We discovered that TAK1 is overexpressed in pancreatic cancer cell lines and patient tumor tissues. We demonstrated that the elevated activity of TAK1 is caused by its binding partner TAB1. Knocking down of TAK1 in pancreatic cancer cells with RNAi technique resulted in cell apoptosis and significantly reduces the size of tumors in mice and made a chemotherapy drug more potent. Targeting the kinase activity of TAK1 with the selective inhibitor LY2610956 strongly synergized in vitro with the antitumor activity of gemcitabine, oxaliplatin, or irinotecan on pancreatic cancer cells. These findings highlighted that TAK1 could be a potential therapeutic target for pancreatic cancer. We also demonstrated that TAK activity is regulated by its binding protein TAB1. We defined a minimum TAB1 sequence which is required and sufficient for TAK1 kinase activity. We created a recombinant TAK1-TAB1 C68 fusion form which has highly kinase activity. This active form could is used for screening TAK1 inhibitors. In addition, several posttranslational modifications were identified in our study. The acetylation of lysine 158 on TAK1 is required for kinase activity. This site is conserved throughout all of kinase. Our findings may reveal a new mechanism by which kinase activity is regulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinoic acid is a small lipophilic molecule that exerts profound effects on the growth and differentiation of both normal and transformed cells. It is also a natural morphogen that is critical in the development of embryonic structures. The molecular effects of retinoic acid involve alterations in the expression of several proteins and these changes are presumably mediated in part by alterations in gene expression. For instance, retinoic acid causes a rapid induction of tissue transglutaminase, an enzyme involved in protein cross-linking. The molecular mechanisms responsible for the effects of retinoic acid on gene expression have not been characterized. To approach this question, I have isolated and characterized tissue transglutaminase of cDNA clones. The deduced amino acid sequences of tissue transglutaminase and of factor XIIIa showed a relatively high degree of homology in their putative calcium binding domains.^ To explore the mechanism of induction of this enzyme, both primary (macrophages) and cultured cells (Swiss 3T3-C2 and CHO fibroblasts) were used. I found that retinoic acid is a general inducer of tissue transglutaminase mRNA in these cells. In murine peritoneal macrophages retinoic acid causes a rapid accumulation of this mRNA and this effect is independent of concurrent protein synthesis. The retinoic acid effect is not mediated by a post-transcriptional increase in the stability of the tissue transglutaminase mRNA, but appears to involve an increase in the transcription rate of the tissue transglutaminase gene. This provides the first example of regulation by retinoic acid of a specific gene, supporting the hypothesis that these molecules act by directly regulating the transcriptional activity of specific genes. A molecular model for the effects of retinoic acid on the expression of genes linked to cellular proliferation and differentiation is proposed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer cells may provide an important first line of defense against metastatic implantation of solid tumors. This antitumor function occurs during the intravascular and visceral lodgment phase of cancer dissemination, as demonstrated in small animal metastasis models. The role of the NK cell in controlling human tumor dissemination is more difficult to confirm, at least partially because of ethical restraints on experimental design. Nonetheless, a large number of solid tumor patient studies have demonstrated NK cell cytolysis of both autologous and allogeneic tumors.^ Of the major cancer therapeutic modalities, successful surgery in conjunction with other treatments offers the best possibility of cure. However, small animal experiments have demonstrated that surgical stress can lead to increased rates of primary tumor take, and increased incidence, size, and rapidity of metastasis development. Because the physiologic impact of surgical stress can also markedly impair perioperative antitumor immune function in humans, we examined the effect of surgical stress on perioperative NK cell cytolytic function in a murine preclinical model. Our studies demonstrated that hindlimb amputation led to a marked impairment of postoperative NK cell cytotoxicity. The mechanism underlying this process is complex and involves the postsurgical generation of splenic erythroblasts that successfully compete with NK cells for tumor target binding sites; NK cell-directed suppressor cell populations; and a direct impairment of NK cell recycling capacity. The observed postoperative NK cell suppression could be prevented by in vivo administration of pyrimidinone biologic response modifiers or by short term in vitro exposure of effector cells to recombinant Interleukin-2. It is hoped that insights gained from this research may help in the future development of NK cell specific perioperative immunotherapy relevant to the solid tumor patients undergoing cancer resection. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histone gene expression is replication-independent during oogenesis and early embryogenesis in amphibians; however, it becomes replication-dependent during later embryogenesis and remains replication-dependent through adulthood. In order to understand the mechanism for this switch in transcriptional regulation of histone gene expression during amphibian development, linker-scanning mutations were made in a Xenopus laevis H2B histone gene promoter by oligonucleotide site-directed mutagenesis and assayed by microinjection into oocytes and embryos. The Xenopus H2B gene has a relatively simple promoter containing several transcriptional regulatory elements, including TFIID, CCAAT, and ATF motifs, required for maximal transcription in both oocytes and embryos. Factors binding to the CCAAT and ATF motifs are present in oocytes and embryos and increase slightly in abundance during early development. A sequence (CTTTACAT) in the frog H2B promoter resembling the conserved octamer motif (ATTTGCAT), the target for cell-cycle regulation of a human H2B gene, is additionally required for maximal H2B transcription in frog embryos. Oocytes and embryos contain multiple octamer-binding proteins that are expressed in a sequential manner during early development. Sequences encoding three novel octamer-binding proteins were isolated from Xenopus cDNA libraries by virtue of their similarity with the DNA binding (POU) domain of the ubiquitously expressed transcription factor Oct-1. The protein encoded by one of these genes, termed Oct-60, was localized mainly in the cytoplasm of oocytes and was also present in early embryos until the gastrula stage of development. Proteins encoded by the other two genes, Oct-25 and Oct-91, were present in embryos after the mid-blastula stage of development and decreased by early neurula stage. The activity of the Xenopus H2B octamer motif in embryos is not specifically associated with increased binding by Oct-1 or the appearance of novel octamer-binding proteins but requires the presence of an intact CCAAT motif. We found that synergistic interactions among promoter elements are important for full H2B promoter activity. The results suggest that transcription of the Xenopus H2B gene is replication-dependent when it is activated at the mid-blastula stage of development and that replication-dependent H2B transcription is mediated by Oct-1. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphatidylserine (PS) is not only one of the structural components of the plasma membrane, it also plays an important role in blood coagulation, and cell-cell interactions during aging and apoptosis.^ Here we studied some alterations that occur in membrane phosphatidylserine asymmetry during erythroid differentiation-associated apoptosis and erythrocyte aging and characterized some aspects in the regulation of PS asymmetry.^ Erythroleukemia cells, frequently used to study erythroid development, undergo apoptosis when induced to differentiate along the erythroid lineage. In the case of K562 cells induced to differentiate with hemin, this event is characterized by DNA fragmentation that correlates with downregulation of the survival protein BCL-xL and ultimately the result is cell death. We showed here that reorientation of PS from the inner-to-outer plasma membrane leaflet and inhibition of the aminophospholipid translocase are also events observed upon hemin treatment. We observed that constitutive expression of BCL-2 did not inhibit the alterations caused by hemin in membrane lipid asymmetry and only slightly prevented hemin-induced DNA fragmentation. On the other hand, BCL-2 effectively inhibited actinomycin D and staurosporine-induced DNA fragmentation and the appearance of PS at the outer leaflet of these cells. z.VAD.fmk, a widely used caspases inhibitor, blocked DNA fragmentation induced by both hemin and actinomycin D but only inhibited PS externalization in cells treated with actinomycin D.^ These results showed that PS externalization occurs during differentiation-related apoptosis. Unlike the pharmacologically-induced event, however, hemin-induced PS redistribution seems to be regulated by a mechanism independent of BCL-2 and caspases.^ Membrane PS is externalized not only during apoptosis but also during red blood cell senescence. To study this event, we artificially induced cellular aging by in vitro storage or vesiculation in the presence of the amphipathic lipid dilauroylphosphatidylcholine. These cells were monitored for age-dependent changes in cell density by Percoll gradient centrifugation and assessed for alterations in membrane lipid asymmetry and their ability to be cleared in vivo. These experiments demonstrated a progressive increase in red cell density upon vesiculation and in vitro aging. The clearance rate of cells obtained after vesiculation, was biphasic in nature, showing a very rapid component together with a second component consistent with the clearance rates of control populations. Quantitation of PS in the outer leaflet of red cells revealed that membrane redistribution of PS occurred upon in vitro storage and vesiculation. Inhibition of the aminophospholipid translocase with the sulfhydryl-oxidant reagent pyridyldithioethylamine resulted in higher PS externalization and enhanced clearance of vesiculated RBC.^ These observations not only suggest that vesiculation may be the mechanism responsible for some of the characteristic changes in cell density and PS asymmetry that occur upon cell aging, but also confirm the role of PS in the recognition and clearance of senescent cells. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peptide nucleic acids (PNA) are mimics of nucleic acids with a peptidic backbone. Duplexes and triplexes formed between PNA and DNA or RNA possess remarkable thermal stability, they are resistant to nuclease cleavage and can better discriminate mismatches. Understanding the mechanism for the tight binding between PNA and oligonucleotides is important for the design and development of better PNA-based drugs.^ We have performed molecular dynamics (MD) simulations of 8-mer PNA/DNA duplex and two analogous duplexes with chiral modification of PNA strand (D- or L-Alanine modification). MD simulations were performed with explicit water and Na$\sp{+}$ counter ions. The 1.5-ns simulations were carried out with AMBER using periodic boundary and particle mesh Ewald summation. The point charges for PNA monomers were derived from fitting electrostatic potentials, obtained from ab initio calculation, to atomic centers using RESP. Derived charges reveal significantly altered charge distribution on the PNA bases and predict the Watson-Crick H-bonds involving PNA to be stronger. Results from NMR studies investigating H-bond interactions between DNA-DNA and DNA-PNA base pairs in non-polar environment are consistent with this prediction. MD simulations demonstrated that the PNA strand is more flexible than the DNA strand in the same duplex. That this flexibility might be important for the duplex stability is tested by introducing modification into the PNA backbones. Results from MD simulation revealed dramatically altered structures for the modified PNA-DNA duplexes. Consistent with previous NMR results, we also found no intrachain hydrogen bonds between O7$\sp\prime$ and N1$\sp\prime$ of the neighboring residues in our MD study. Our study reveals that in addition to the lack of charge repulsion, stronger Watson-Crick hydrogen bonds together with flexible backbone are important factors for the enhanced stability of the PNA-DNA duplex.^ In a related study, we have developed an application of Gly-Gly-His-(Gly)$\sb3$-PNA conjugate as an artificial nuclease. We were able to demonstrate cleavage of single stranded DNA at a single site upon Ni(II) binding to Gly-Gly-His tripeptide and activation of nuclease with monoperoxyphthalic acid. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcriptional regulation is fundamental for the precise development of all organisms. Through tight regulation, necessary genes are activated at proper spatial and temporal patterns, while unnecessary genes are repressed. A large family of regulator proteins that have been demonstrated to be involved in various developmental processes by activation and repression of target genes is the homeodomain family of proteins. To date, the function of many of these homeoproteins has been elucidated in diverse species. However, the molecular mechanism underlying the function of these proteins has not been fully understood. In this study, the molecular mechanism of the function of a LIM-homeoprotein, Lim1, was examined. In addition to the homeodomain, Lim1 contains two LIM domains that are highly conserved among species. This high conservation along with data from in vitro studies on Xenopus Lim1 suggests that the LIM domains might be important for the function of Lim1 as a transcriptional regulator. Here, the functional importance of the LIM domains of Lim1 was determined by using a novel gene-targeting strategy in mouse embryonic stem (ES) cells. A cre-loxP system was used in conjunction with the unique genomic organization of Lim1 to obtain four types of mutant ES cell lines that would allow for the in vivo analysis of the function of both the LIM domains of Lim1 together and also singularly. These four mutant Lim1 alleles either contained base-pair changes at the LIM encoding exons that alters zinc-binding amino acids of the LIM domains or contained only exogenous loxP sequences in the first intron of Lim1, which serves as the control allele. These mutations in the LIM domains would presumably abolish the zinc-finger tertiary structure of the domain and thus render the domain non-functional. Mice carrying mutations at both the LIM domains of Lim1, L1L2, die around E10 without anterior head structures anterior to rhombomere 3, identical in phenotype to the Lim1 null mutants in spite of the presence of mutant Lim1 RNA. This result demonstrates that the integrity of both the LIM domains are essential for the function of Lim1. This is further supported by the phenotype of mice carrying mutation at only the second LIM domain of Lim1, L2. The L2 mice although still carrying one intact Lim1 LIM domain, also die in utero. The L2 mice die at varying times, from around E8 to E10 with anterior defects in addition to other axial defects which have yet to be fully characterized. The results of this study so far demonstrates that the integrity of both LIM domains are required for the function of Lim1. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex molecular events underlie vertebrate eye development and disease. The eye is composed of two major tissue types: the anterior and posterior segments. During development, the retinal progenitor cells differentiate into six neuronal and one non-neuronal cell types. These cell types later organize into the distinct laminar structure of the mature retina which occupies the posterior segment. In the developed anterior segment, both the ciliary body and trabecular meshwork regulate intraocular pressure created by the aqueous humor. The disruption in intraocular pressure can lead to a blinding condition called glaucoma. To characterize molecular mechanisms governing retinal development and glaucoma, two separate mouse knockout lines carrying mutations in math5 and myocilin were subjected to a series of in vivo analyses. ^ Math5 is a murine homologue of Drosophila atonal , a bHLH proneural gene essential for the formation of photoreceptor cells. The expression of math5 coincides with the onset of retinal ganglion cell differentiation. The targeted deletion of mouse math5 revealed that a null mutation inhibits the formation of a majority of the retinal ganglion cells. The mutation also interferes with the normal development of other retinal cell types such as amacrine, bipolar and photoreceptor cells. These results suggest that math5 is a proneural gene responsible for differentiation of retinal ganglion cells and may also have a role in normal development of other neuronal cell types within the retina. ^ Myocilin has two unique protein coding regions bearing homology to non-muscle myosin of Dictyostelium discoideum and to olfactomedin, an extracellular matrix molecule first described in the olfactory epithelium of the bullfrog. Recently, autosomal dominant forms of myocilin mutations have been found in individuals with primary open-angle glaucoma. The genetic linkage to glaucoma suggests a role of myocilin in normal intraocular pressure and ocular function. However, the analysis of mice heterozygous and homozygous for a targeted null mutation in myocilin indicates that it is dispensable for normal intraocular pressure or ocular function. Additionally, the lack of a discernable phenotype in both heterozygous and null mice suggests that haploinsufficiency is not a critical mechanism for MYOC-associated glaucoma in humans. Instead, disease-causing mutations likely act by gain of function. ^ In summary, these studies provide novel insights into the embryonic development of the vertebrate retina, and also begin to uncover the molecular mechanisms responsible for the pathogenesis of glaucoma. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unicellular amoeba Dictyostelium discoideum embarks on a developmental program upon starvation. During development, extracellular oscillatory cAMP signaling orchestrates the chemotaxis-mediated aggregation of ∼105 amoebae and is required for optimal induction of so-called pulse-induced genes. This requirement for pulsatile CAMP reflects adaptation of the cAMP-receptor-mediated pathways that regulate these genes. Through examination of a collection of pulse-induced genes, we defined two distinct gene classes based on their induction kinetics and the impact of mutations that impair PKA signaling. The first class (represented by D2 and prtA) is highly dependent on PKA signaling, whereas the second class (represented by carA, gpaB, and acaA) is not. Analysis of expression kinetics revealed that these classes are sequentially expressed with the PKA-independent genes peaking in expression before the PKA-dependent class. Experiments with cycloheximide, an inhibitor of translation, demonstrated that the pulse induction of both classes depends on new protein synthesis early in development. carA and gpaB also exhibit pulse-independent, starvation-induced expression which, unlike their pulse induction, was found to be insensitive to cycloheximide added at the outset of starvation. This result indicates that the mechanism of starvation induction pre-exists in growing cells and is distinct from the pulse induction mechanism for these genes. In order to identify cis-acting elements that are critical for induction of carA, we constructed a GFP reporter controlled by a 914-base-pair portion of its promoter and verified that its expression was PKA-independent, pulse-inducible, and developmentally regulated like the endogenous carA gene. By a combination of truncation, internal deletion, and site-directed mutation, we defined several distinct functional elements within the carA promoter, including a 39-bp region required for pulse induction between base pairs -321 and -282 (relative to the transcription start site), a 131-bp region proximal to the start site that is sufficient for starvation induction, and two separate enhancer domains. Identification of factors that interact with these promoter elements and genetic approaches exploiting the GFP reporter described here should help complete our understanding of the mechanisms regulating these genes, including adaptation mechanisms that likely also govern chemotaxis of Dictyostelium and mammalian cells. ^