2 resultados para Classification algorithm

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well accepted that tumorigenesis is a multi-step procedure involving aberrant functioning of genes regulating cell proliferation, differentiation, apoptosis, genome stability, angiogenesis and motility. To obtain a full understanding of tumorigenesis, it is necessary to collect information on all aspects of cell activity. Recent advances in high throughput technologies allow biologists to generate massive amounts of data, more than might have been imagined decades ago. These advances have made it possible to launch comprehensive projects such as (TCGA) and (ICGC) which systematically characterize the molecular fingerprints of cancer cells using gene expression, methylation, copy number, microRNA and SNP microarrays as well as next generation sequencing assays interrogating somatic mutation, insertion, deletion, translocation and structural rearrangements. Given the massive amount of data, a major challenge is to integrate information from multiple sources and formulate testable hypotheses. This thesis focuses on developing methodologies for integrative analyses of genomic assays profiled on the same set of samples. We have developed several novel methods for integrative biomarker identification and cancer classification. We introduce a regression-based approach to identify biomarkers predictive to therapy response or survival by integrating multiple assays including gene expression, methylation and copy number data through penalized regression. To identify key cancer-specific genes accounting for multiple mechanisms of regulation, we have developed the integIRTy software that provides robust and reliable inferences about gene alteration by automatically adjusting for sample heterogeneity as well as technical artifacts using Item Response Theory. To cope with the increasing need for accurate cancer diagnosis and individualized therapy, we have developed a robust and powerful algorithm called SIBER to systematically identify bimodally expressed genes using next generation RNAseq data. We have shown that prediction models built from these bimodal genes have the same accuracy as models built from all genes. Further, prediction models with dichotomized gene expression measurements based on their bimodal shapes still perform well. The effectiveness of outcome prediction using discretized signals paves the road for more accurate and interpretable cancer classification by integrating signals from multiple sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cervical cancer is the leading cause of death and disease from malignant neoplasms among women in developing countries. Even though the Pap smear has significantly decreased the number of deaths from cervical cancer in the past years, it has its limitations. Researchers have developed an automated screening machine which can potentially detect abnormal cases that are overlooked by conventional screening. The goal of quantitative cytology is to classify the patient's tissue sample based on quantitative measurements of the individual cells. It is also much cheaper and potentially can take less time. One of the major challenges of collecting cells with a cytobrush is the possibility of not sampling any existing dysplastic cells on the cervix. Being able to correctly classify patients who have disease without the presence of dysplastic cells could improve the accuracy of quantitative cytology algorithms. Subtle morphologic changes in normal-appearing tissues adjacent to or distant from malignant tumors have been shown to exist, but a comparison of various statistical methods, including many recent advances in the statistical learning field, has not previously been done. The objective of this thesis is to use different classification methods applied to quantitative cytology data for the detection of malignancy associated changes (MACs). In this thesis, Elastic Net is the best algorithm. When we applied the Elastic Net algorithm to the test set, we combined the training set and validation set as "training" set and used 5-fold cross validation to choose the parameter for Elastic Net. It has a sensitivity of 47% at 80% specificity, an AUC 0.52, and a partial AUC 0.10 (95% CI 0.09-0.11).^