4 resultados para Circular dichroism

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about the pathogenic determinants of this organism. We have previously identified a cell-wall-anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad-spectrum binding to extracellular matrix proteins. Here, we analysed the draft genome of strain TX0016 for potential microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Genome-based bioinformatics identified 22 predicted cell-wall-anchored E. faecium surface proteins (Fms), of which 15 (including Acm) had characteristics typical of MSCRAMMs, including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one [Fms10; redesignated second collagen adhesin of E. faecium (Scm)] revealed that recombinant Scm(65) (A- and B-domains) and Scm(36) (A-domain) bound to collagen type V efficiently in a concentration-dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism measurements of recombinant Scm(36) and of Acm(37) indicated that these proteins were rich in beta-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; nine of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated EbpC(fm)), detected a 'ladder' pattern of high-molecular-mass protein bands in a Western blot analysis of cell surface extracts from E. faecium, suggesting that EbpC(fm) is polymerized into a pilus structure. Further analysis of the transcripts of the corresponding gene cluster indicated that fms1 (ebpA(fm)), fms5 (ebpB(fm)) and ebpC(fm) are co-transcribed, a result consistent with those for pilus-encoding gene clusters of other Gram-positive bacteria. All 15 genes occurred frequently in 30 clinically derived diverse E. faecium isolates tested. The common occurrence of MSCRAMM- and pilus-encoding genes and the presence of a second collagen-binding protein may have important implications for our understanding of this emerging pathogen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report that three (EF0089, EF2505 and EF1896, renamed here Fss1, Fss2 and Fss3, respectively, for Enterococcus faecalis surface protein) of the recently predicted MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) in E. faecalis strain V583 bind fibrinogen (Fg). Despite an absence of extensive primary sequence homology, the three proteins appear to be related structurally. Within the N-terminal regions of the three enterococcal proteins, we identified pairs of putative IgG-like modules with a high degree of predicted structural similarity to the Fg-binding N2 and N3 domains of the staphylococcal MSCRAMMs ClfA and SdrG. A second N2N3-like segment was predicted in Fss1. Far-UV circular dichroism spectroscopy revealed that all four predicted N2N3-like regions are composed mainly of beta-sheets with only a minor proportion of alpha-helices, which is characteristic of Ig-like folded domains. Three of the four identified enterococcal N2N3-like regions showed potent dose-dependent binding to Fg. However, the specificity of the Fg-binding MSCRAMMs differs, as indicated by far-Western blots, which showed that recombinant segments of the MSCRAMMs bound different Fg polypeptide chains. Enterococci grown in serum-supplemented broth adhere to Fg-coated surfaces, and inactivation in strain OG1RF of the gene encoding Fss2 resulted in reduced adherence, whilst complementation of the mutant restored full Fg adherence. Thus, E. faecalis contains a family of MSCRAMMs that structurally and functionally resemble the Fg-binding MSCRAMMs of staphylococci.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complement C3a anaphylatoxin is a major molecular mediator of innate immunity. It is a potent activator of mast cells, basophils and eosinophils and causes smooth muscle contraction. Structurally, C3a is a relatively small protein (77 amino acids) comprising a N-terminal domain connected by 3 native disulfide bonds and a helical C-terminal segment. The structural stability of C3a has been investigated here using three different methods: Disulfide scrambling; Differential CD spectroscopy; and Reductive unfolding. Two uncommon features regarding the stability of C3a and the structure of denatured C3a have been observed in this study. (a) There is an unusual disconnection between the conformational stability of C3a and the covalent stability of its three native disulfide bonds that is not seen with other disulfide proteins. As measured by both methods of disulfide scrambling and differential CD spectroscopy, the native C3a exhibits a global conformational stability that is comparable to numerous proteins with similar size and disulfide content, all with mid-point denaturation of [GdmCl](1/2) at 3.4-5M. These proteins include hirudin, tick anticoagulant protein and leech carboxypeptidase inhibitor. However, the native disulfide bonds of C3a is 150-1000 fold less stable than those proteins as evaluated by the method of reductive unfolding. The 3 native disulfide bonds of C3a can be collectively and quantitatively reduced with as low as 1mM of dithiothreitol within 5 min. The fragility of the native disulfide bonds of C3a has not yet been observed with other native disulfide proteins. (b) Using the method of disulfide scrambling, denatured C3a was shown to consist of diverse isomers adopting varied extent of unfolding. Among them, the most extensively unfolded isomer of denatured C3a is found to assume beads-form disulfide pattern, comprising Cys(36)-Cys(49) and two disulfide bonds formed by two pair of consecutive cysteines, Cys(22)-Cys(23) and Cys(56)-Cys(57), a unique disulfide structure of polypeptide that has not been documented previously.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Membrane proteins are critical to every aspect of cell physiology, with their association mediating important biological functions. The transmembrane and cytoplasmic domains are known to be important for their association. In order to characterize their role in detail, we have applied different biophysical techniques in detergent micelles to two model systems. The first study involves FcRγ, a single transmembrane domain protein existing as a disulfide linked homodimer. We investigated the role of a conserved transmembrane polar residue and the cytoplasmic tail in FcRγ homo-interactions. Our results by various biophysical techniques including SDS-PAGE, circular dichroism and sedimentation equilibrium in detergent micelles indicate importance of both the transmembrane polar residue and cytoplasmic tail in maintaining proper conformation for FcRγ homo-interactions. A contrasting second study was on L-selectin, another single transmembrane domain protein with a large extracellular domain and a short cytoplasmic tail. Previous cross-linking experiments indicate its possible dimerization. However, the purified fragment of L-selectin and corresponding mutants did not dimerize when analyzed by TOXCAT assay, sedimentation equilibrium and fluorescence resonance energy transfer. It was likely that the presence of juxtamembrane positively charged residues led to decreased migrational rates in SDS PAGE. In conclusion, complementary biophysical techniques should be used with care when studying membrane protein association in detergent micelles. As an extension to our study on L-selectin, we also investigated its interaction with Calmodulin (CaM) in detergent micelles. CaM was found to interact with different detergents. We applied fluorescence and NMR spectroscopy to characterize the interaction of both the apo and Ca 2+ bound form of CaM, with commonly used detergents, below and above their respective critical micelle concentrations. The interaction of apo-CaM with detergents was found to vary with the nature of the detergent head group, whereas Ca2+-CaM interacted with individual detergent molecules irrespective of the nature of their head group. NMR titration experiments of CaM with detergents indicated involvement of specific residues from the N-lobe, linker and C-lobe of CaM. ^