31 resultados para Chromosomes, Human, Pair 2
em DigitalCommons@The Texas Medical Center
Resumo:
Persistently low white blood cell count (WBC) and neutrophil count is a well-described phenomenon in persons of African ancestry, whose etiology remains unknown. We recently used admixture mapping to identify an approximately 1-megabase region on chromosome 1, where ancestry status (African or European) almost entirely accounted for the difference in WBC between African Americans and European Americans. To identify the specific genetic change responsible for this association, we analyzed genotype and phenotype data from 6,005 African Americans from the Jackson Heart Study (JHS), the Health, Aging and Body Composition (Health ABC) Study, and the Atherosclerosis Risk in Communities (ARIC) Study. We demonstrate that the causal variant must be at least 91% different in frequency between West Africans and European Americans. An excellent candidate is the Duffy Null polymorphism (SNP rs2814778 at chromosome 1q23.2), which is the only polymorphism in the region known to be so differentiated in frequency and is already known to protect against Plasmodium vivax malaria. We confirm that rs2814778 is predictive of WBC and neutrophil count in African Americans above beyond the previously described admixture association (P = 3.8 x 10(-5)), establishing a novel phenotype for this genetic variant.
Resumo:
Human a2 -macroglobulin ( a2 M; homotetramer, Mr 720 kDa) is an essential scavenger of proteinases in the serum. Each of its four subunits has a ‘bait region’, with cleavage sequences for almost all endo-proteinases, an unusual thiol ester moiety and a receptor-binding domain (RBD). Bait region cleavage in native a2 M ( a2 M-N) by a proteinase results in rapid thiol ester breakage, with a large-scale structural transformation, in which a2 M uniquely entraps the proteinase in a cage-like structure and exposes receptor-binding domains for rapid endocytosis. Transformed a2 M ( a2 M-TR) contains up to two proteinases, which remain active to small substrates. 3-D electron microscopy is optimally suited to study this unusual structural change at resolutions near (1/30) Å−1. ^ The structural importance of the thiol esters was demonstrated by a genetically-engineered a2 M, with the cysteines involved in thiol ester formation mutated to serines, which appeared structurally homologous to a2 M-TR. This demonstrates that the four highly labile thiol esters alone maintain the a2 M-N structure, while the ‘closed trap’ formed by a2 M-TR is a more stable structural form. ^ Half-transformed a2 M ( a2 M-HT), with cleaved bait regions and thiol esters in only two of its four subunits, provides an important structural link between a2 M-N and a2 M-TR. A comparison with a2 M-N showed the two proteinase-entrapping domains were above and below the plane bisecting the long axis. Both a2 M-N and a2 M-TR consist of two dense, oppositely twisted strands with significant interconnections, indicating that the structural change involves a rotation of these strands. In a2 M-HT these strands were partially untwisted with large central openings, revealing the manner in which the proteinase enters the internal cavity of a2 M. ^ In reconstructions of a2 M-N, a2 M-HT and a2 M-TR labeled with a monoclonal Fab, the Fabs were located on distal ends of each constitutive strand, demonstrating an anti-parallel arrangement of the subunits. Separation between the top and bottom pairs of Fabs was nearly the same on all structures, but the pairs were rotated about the long axis. Taken together, these results indicate that upon proteinase cleavage the two strands in a2 M-N separate. The proteinase enters the structure, while the strands re-twist to encage it. In a2 M-TR, which displays receptor-binding arms, more than two subunits are transformed as strands in the transformed half of a2 M-HT were not separated. ^
Resumo:
Medulloblastoma is the most common malignant brain tumor of childhood. Despite numerous advances, clinical challenges range from recurrent and progressive disease to long-term toxicities in survivors. The lack of more effective, less toxic therapies results from our limited understanding of medulloblastoma growth. Although TP53 is the most commonly altered gene in cancers, it is rarely mutated in medulloblastoma. Accumulating evidence, however, indicates that TP53 pathways are disrupted in medulloblastoma. Wild-type p53-induced phosphatase 1 (WIP1 or PPM1D) encodes a negative regulator of p53. WIP1 amplification (17q22-q23) and its overexpression have been reported in diverse cancer types. We examined primary medulloblastoma specimens and cell lines, and detected WIP1 copy gain and amplification prevalent among but not exclusively in the tumors with 17q gain and isochromosome 17q (i17q), which are among the most common cytogenetic lesions in medulloblastoma. WIP1 RNA levels were significantly higher in the tumors with 17q gain or i17q. Immunoblots confirmed significant WIP1 protein in primary tumors, generally higher in those with 17q gain or i17q. Under basal growth conditions and in response to the chemotherapeutic agent, etoposide, WIP1 antagonized p53-mediated apoptosis in medulloblastoma cell lines. These results indicate that medulloblastoma express significant levels of WIP1 that modulate genotoxic responsiveness by negatively regulating p53.
Resumo:
This laboratory developed human T-cell hybridomas which constitutively secrete suppressor factors (SF) capable of inhibiting immune responses (Hybridoma 6:589 (1987). The mechanisms by which human T-cell hybridoma-derived SFs (designated 160 and 169) and Jurkat leukemic T-cell line derived SF inhibit the proliferative response to mitogen by human PBMC were investigated. The Jurkat SF had a pI of 5.2 whereas the 160 and 169 SF had pI of 5.7 and 4.7 (two peaks) and 4.7, respectively. The SF was not transforming growth factor-beta based upon neutralization and iummunoprecipitation experiments with anti-TGF-beta polyclonal antibody. Il-2 production by human PBMC cultured with Con A or OKT3 mAb in the presence of SF was found to be inhibited by greater than 80%. The proliferative responses of SF treated PBMC could not be restored by addition of exogeneous human IL-2. Inhibition of the proliferative responses could not be reversed by addition of exogenous rIL-1, rIL-2 or rIL-4 alone or in paired combinations. The expression of IL-2 receptors (TAC Ag) on Con A activated cultures time points was not affected by treatment with any SFs. Both the 160 and 169 hybridoma-derived SFs were found to arrest PHA induced cell cycle progression in G$\sb0$/G$\sb1$ phase, whereas SF from the Jurkat T-cell line arrested progression in the S phase. Pretreatment of PBMC with SF prior to the addition of mitogen, followed by washing, did not alter the proliferative response of these PBMC nor their cell cycle progression suggesting that cell activation is necessary for these SF to inhibit proliferative responses. Northern blot analysis of total mRNA from mitogen stimulated PBMC in the presence of SF, revealed a time dependent accumulation of an IL-2 specific mRNA of increased size (2.8 kB) in addition to the expected 1.0 kB mature IL-2 message. Interferon-gamma mRNA was of the appropriate size but its half-life was prolonged in SF treated cultures. IL-2 receptor and IL-1 beta mRNA expression was not altered in these cells. ^
Resumo:
Human lipocalin 2 is described as the neutrophil gelatinase-associated lipocalin (NGAL). The lipocalin 2 gene encodes a small, secreted glycoprotein that possesses a variety of functions, of which the best characterized function is organic iron binding activity. Elevated NGAL expression has been observed in many human cancers including breast, colorectal, pancreatic and ovarian cancers. I focused on the characterization of NGAL function in chronic myelogenous leukemia (CML) and breast cancer. Using the leukemic xenograft mouse model, we demonstrated that over-expression of NGAL in K562 cells, a leukemic cell line, led to a higher apoptotic rate and an atrophy phenotype in the spleen of inoculated mice compared to K562 cells alone. These results indicate that NGAL plays a primary role in suppressing hematopoiesis by inducing apoptosis within normal hematopoietic cells. In the breast cancer project, we analyzed two microarray data sets of breast cancer cell lines ( n = 54) and primary breast cancer samples (n = 318), and demonstrated that high NGAL expression is significantly correlated with several tumor characteristics, including negative estrogen receptor (ER) status, positive HER2 status, high tumor grade, and lymph node metastasis. Ectopic NGAL expression in non-aggressive (ZR75.1 and MCF7) cells led to aggressive tumor phenotypes in vitro and in vivo. Conversely, knockdown of NGAL expression in various breast cancer cell lines by shRNA lentiviral infection significantly decreased migration, invasion, and metastasis activities of tumor cells both in vitro and in vivo . It has been previously reported that transgenic mice with a mutation in the region of trans-membrane domain (V664E) of HER2 develop mammary tumors that progress to lung metastasis. However, we observed that genetic deletion of the 24p3 gene, a mouse homolog of NGAL, in HER2 transgenic mice by breeding with 24p3-null mice resulted in a significant delay of mammary tumor formation and reduction of lung metastasis. Strikingly, we also found that treatment with affinity purified 24p3 antibodies in the 4T1 breast cancer mice strongly reduced lung metastasis. Our studies provide evidence that NGAL plays a critical role in breast cancer development and progression, and thus NGAL has potential as a new therapeutic target in breast cancer.^
Resumo:
The most common molecular alterations observed in prostate cancer are increased bcl-2 protein expression and mutations in p53. Understanding the molecular alterations associated with prostate cancer are critical for successful treatment and designing new therapeutic interventions. Hormone-ablation therapy remains the most effective nonsurgical treatment; however, most patients will relapse with hormone-independent, refractory disease. This study addresses how hormone-ablation therapy may increase bcl-2, develops a transgenic model to elucidate the role of bcl-2 multistep prostate carcinogenesis, and assesses how bcl-2 may confer resistance to cell death induction using adenoviral wild-type p53 gene therapy. ^ Two potential androgen response elements were identified in the bcl-2 promoter. Bcl-2 promoter luciferase constructs were transfected into the hormone- sensitive LNCaP prostate cell line. In the presence of dihydrotestosterone, the activity of one bcl-2 promoter luciferase construct was repressed 40% compared to control cells grown in charcoal-stripped serum. Additionally, it was demonstrated that both bcl-2 mRNA and protein were downregulated in the LNCaP cells grown in the presence DHT. This suggests that DHT represses bcl-2 expression through possible direct and indirect mechanisms and that hormone-ablation therapy may actually increases bcl-2 protein. ^ To determine the role of bcl-2 in prostate cancer progression in vivo, probasin-bcl-2 mice were generated where human bcl-2 was targeted to the prostate. Increased bcl-2 expression rendered the ventral prostate more resistant to apoptosis induction following castration. When the probasin-bcl-2 mice were crossed with TRAMP mice, the latency to tumor formation was decreased. The expression of bcl-2 in the double transgenic mice did not affect the incidence of metastases. The double transgenic model will facilitate the study of in vivo effects of specific genetic lesions during the pathogenesis of prostate cancer. ^ The effects of increased bcl-2 protein on wild-type adenoviral p53-mediated cell death were determined in prostatic cell lines. Increased bcl-2 protected PC3 and DU145 cell lines, which possess mutant p53, from p53-mediated cell death and reductions in cell viability. Bcl-2 did not provide the same protective effect in LNCaP cell line, which expresses wild-type p53. This suggests that the ability of bcl-2 to protect against p53-mediated cell death is dependent upon the endogenous status of p53. ^
Resumo:
AP-2γ is a member of the AP-2 transcription factor family, is highly enriched in the trophoblast cell lineage, and is essential for placenta development. In an effort to identify factors regulating AP-2γ gene expression we isolated and characterized the promoter and 5′ flanking region of the mouse and human AP-2γ genes. The transcription start site of the mouse AP-2γ gene was mapped by primer extension and 5′ RACE. Transient gene transfer studies showed that basal promoter activity resides within a highly conserved ∼200 by DNA sequence located immediately upstream of the transcription start site. The conserved region is highly GC-rich and lacks typical TATA or CCAAT boxes. Multiple potential Sp and AP-2 binding sites are clustered within this region. Electrophoretic mobility shift assays demonstrated that Sp1 and Sp3 bind to three sites in the promoter region of the mouse AP-2γ gene. Combined mutation of the three putative Sp sites reduced promoter activity by 80% in trophoblast and non-trophoblast cells, demonstrating the functional importance of these sites in AP-2γ gene expression. ^ Mutational analysis of the 5′-flanking region revealed a 117-bp positive regulatory region of the mouse AP-2γ gene located between −5700 and −5583 upstream of the transcription start site. This 117-bp positive regulatory element provided approximately 7-fold enhancement of reporter gene expression in cultured trophoblast cells. A C/EBP-Sp1 transcription factor-binding module is located in this DNA sequence. Electrophoretic mobility shift assays demonstrated that transcription factors Sp1, Sp3 and C/EBP bind to the enhancer element. Mutation of each protein-binding site reduced the enhanced expression significantly. Mutagenesis assays showed that two other protein-binding sites also contribute to the enhancer activity. In summary, we have shown that Sp1 and Sp3 bind to cis-regulatory elements located in the promoter region and contribute to basal promoter activity. We have identified a 117-bp positive regulatory element of AP-2γ gene, and we have shown that Sp and C/EBP proteins bind to the cis -regulatory elements and contribute to the enhanced gene expression. ^
Resumo:
Double minutes (dm) are small chromatin particles of 0.3 microns diameter found only in the metaphase cells of human and murine tumors. Dm are unique cytogenetic structures since their numbers per cell show wide variation. At cell division, dm are retained despite the lack of centromeres. In squash preparations, dm show clustering often in association with chromosomes. Human carcinoma cell line SW613-S18 was found to have large numbers of dm and biological characteristics favorable for mitotic synchronization and chromosome isolation experiments.^ S18 cells were synchronized to mitosis with metabolic and mitotic blocking compounds. Mitotic cells were lysed to release chromosomes and dm from the mitotic spindle and the resulting suspensions were fractionated to enrich for dm. The DNA in enriched fractions was characterized. The reassociation kinetics of dm-DNA driven with placental human DNA was similar to the reassociation curve of labeled placental DNA under similar conditions. In situ hybridization of dm-DNA to tumor and normal metaphase cells showed grain localization over the entire karyotype. Dm-DNA was shown by pulse chase DNA replication experiments to replicate during early and mid S-phase of the cell cycle, but not in late S-phase. In addition, BrdUrd incorporation studies showed that dm-DNA replicates only once during the S-phase. Premature chromosome condensation studies suggest the basis of numerical heterogeneity of dm is nondisjunction, not anomalous or unscheduled DNA replication.^ These data and previous cytochemical banding studies of dm in SW613-S18 indicate that dm-DNA is chromosomal in origin. No evidence of gene amplification was found in the DNA reassociation data. It is likely that dm-DNA represents the pale-staining G-band regions of the human karyotype in this cell line. ^
Resumo:
Developing a Model Interruption is a known human factor that contributes to errors and catastrophic events in healthcare as well as other high-risk industries. The landmark Institute of Medicine (IOM) report, To Err is Human, brought attention to the significance of preventable errors in medicine and suggested that interruptions could be a contributing factor. Previous studies of interruptions in healthcare did not offer a conceptual model by which to study interruptions. As a result of the serious consequences of interruptions investigated in other high-risk industries, there is a need to develop a model to describe, understand, explain, and predict interruptions and their consequences in healthcare. Therefore, the purpose of this study was to develop a model grounded in the literature and to use the model to describe and explain interruptions in healthcare. Specifically, this model would be used to describe and explain interruptions occurring in a Level One Trauma Center. A trauma center was chosen because this environment is characterized as intense, unpredictable, and interrupt-driven. The first step in developing the model began with a review of the literature which revealed that the concept interruption did not have a consistent definition in either the healthcare or non-healthcare literature. Walker and Avant’s method of concept analysis was used to clarify and define the concept. The analysis led to the identification of five defining attributes which include (1) a human experience, (2) an intrusion of a secondary, unplanned, and unexpected task, (3) discontinuity, (4) externally or internally initiated, and (5) situated within a context. However, before an interruption could commence, five conditions known as antecedents must occur. For an interruption to take place (1) an intent to interrupt is formed by the initiator, (2) a physical signal must pass a threshold test of detection by the recipient, (3) the sensory system of the recipient is stimulated to respond to the initiator, (4) an interruption task is presented to recipient, and (5) the interruption task is either accepted or rejected by v the recipient. An interruption was determined to be quantifiable by (1) the frequency of occurrence of an interruption, (2) the number of times the primary task has been suspended to perform an interrupting task, (3) the length of time the primary task has been suspended, and (4) the frequency of returning to the primary task or not returning to the primary task. As a result of the concept analysis, a definition of an interruption was derived from the literature. An interruption is defined as a break in the performance of a human activity initiated internal or external to the recipient and occurring within the context of a setting or location. This break results in the suspension of the initial task by initiating the performance of an unplanned task with the assumption that the initial task will be resumed. The definition is inclusive of all the defining attributes of an interruption. This is a standard definition that can be used by the healthcare industry. From the definition, a visual model of an interruption was developed. The model was used to describe and explain the interruptions recorded for an instrumental case study of physicians and registered nurses (RNs) working in a Level One Trauma Center. Five physicians were observed for a total of 29 hours, 31 minutes. Eight registered nurses were observed for a total of 40 hours 9 minutes. Observations were made on either the 0700–1500 or the 1500-2300 shift using the shadowing technique. Observations were recorded in the field note format. The field notes were analyzed by a hybrid method of categorizing activities and interruptions. The method was developed by using both a deductive a priori classification framework and by the inductive process utilizing line-byline coding and constant comparison as stated in Grounded Theory. The following categories were identified as relative to this study: Intended Recipient - the person to be interrupted Unintended Recipient - not the intended recipient of an interruption; i.e., receiving a phone call that was incorrectly dialed Indirect Recipient – the incidental recipient of an interruption; i.e., talking with another, thereby suspending the original activity Recipient Blocked – the intended recipient does not accept the interruption Recipient Delayed – the intended recipient postpones an interruption Self-interruption – a person, independent of another person, suspends one activity to perform another; i.e., while walking, stops abruptly and talks to another person Distraction – briefly disengaging from a task Organizational Design – the physical layout of the workspace that causes a disruption in workflow Artifacts Not Available – supplies and equipment that are not available in the workspace causing a disruption in workflow Initiator – a person who initiates an interruption Interruption by Organizational Design and Artifacts Not Available were identified as two new categories of interruption. These categories had not previously been cited in the literature. Analysis of the observations indicated that physicians were found to perform slightly fewer activities per hour when compared to RNs. This variance may be attributed to differing roles and responsibilities. Physicians were found to have more activities interrupted when compared to RNs. However, RNs experienced more interruptions per hour. Other people were determined to be the most commonly used medium through which to deliver an interruption. Additional mediums used to deliver an interruption vii included the telephone, pager, and one’s self. Both physicians and RNs were observed to resume an original interrupted activity more often than not. In most interruptions, both physicians and RNs performed only one or two interrupting activities before returning to the original interrupted activity. In conclusion the model was found to explain all interruptions observed during the study. However, the model will require an even more comprehensive study in order to establish its predictive value.
Resumo:
Normal humans have one red and at least one green visual pigment genes. These genes are tightly linked as tandem repeats on the X chromosome and each of them has six exons. There is only one X-linked visual pigment gene in New World monkeys (NWMs) but the locus has three polymorphic alleles encoding red, yellow and green visual pigments, respectively. The spectral properties of the squirrel monkey and the marmoset (both NWMs) have been studied and partial sequences of the three alleles are available. To study the evolutionary history of these X-linked opsin genes in humans and NWMs, coding and intron sequences of the three squirrel monkey alleles and the three marmoset alleles were amplified by PCR followed by subcloning and sequencing. Introns 2 and 4 of the human red and green pigment genes were also sequenced. The results obtained are as follows: (1) The sequences of introns 2 and 4 of the human red and green opsin genes are significantly more similar between the two genes than are coding sequences, contrary to the usual situation where coding regions are better conserved in evolution than are introns. The high similarities in the two introns are probably due to recent gene conversion events during evolution of the human lineage. (2) Phylogenetic analysis of both intron and exon sequences indicates that the phylogenetic tree of the available primate opsin genes is the same as the species tree. The two human genes were derived from a gene duplication event after the divergence of the human and NWM lineages. The three alleles in each of the two NWM species diverged after the split of the two NWMs but have persisted in the population for at least 5 million years. (3) Allelic gene conversion might have occurred between the three squirrel monkey alleles. (4) A model of additive effect of hydroxyl-bearing amino acids on spectral tuning is proposed by treating some unknown variables as groups. Under the assumption that some residues have no effect, it is found that at least five amino acid residues, at positions 178 (3 nm), 180 (5 nm), 230 ($-$4 nm), 277 (9 nm) and 285 (13 nm), have linear spectral tuning effects. (5) Adaptive evolution of the opsin genes to different spectral peaks was observed at four residues that are important for spectral tuning. ^
Resumo:
Previous studies from our lab have shown distinctive patterns of expression of bcl-2 gene family members in human nonmelanoma skin cancer (NMSC). To further evaluate the significance of these observations and to study the effects of cell death deregulation during skin carcinogenesis, we generated a transgenic mouse model (HK1.bcl-2) using the human keratin 1 promoter to target the expression of a human bcl-2 minigene to the epidermis. Transgenic protein expression was confirmed in all the layers of the epidermis except the stratum corneum using immunohistochemistry. Multifocal epidermal hyperplasia, without associated hyperkeratosis, was observed in newborn HK1.bcl-2 mice. Immunofluorescence staining using monoclonal antibodies specific for a variety of differentiation markers revealed aberrant expression of keratin 6 (K6) in the transgenic epidermis. Epidermal proliferative indexes, assessed by anti-BrdUrd immunofluorescence staining, were similar in control and transgenic newborn mice, but suprabasal proliferating cells were seen within the hyperplastic areas of the transgenic mouse skin. Spontaneous apoptotic indices of the epidermis were similar in both control and HK1.bcl-2 transgenic newborn mice, however, after UV-B irradiation, the number of "sunburn cells" was significantly higher in the control compared to the HK1.bcl-2 transgenic animals.^ Adult HK1.bcl-2 and control littermate mice were used in UV-B and chemical carcinogenesis protocols including DMBA + TPA. UV-B irradiated control and HK1.bcl-2 mice had comparable incidence of tumors than the controls, but the mean latency period was significantly shorter in the HK1.bcl-2 transgenic. Both control and transgenic animals included in chemical carcinogenesis protocols required application of both the initiating (DMBA) and promoting (TPA) agents to develop tumors. The frequency, number, and latency of tumor formation was similar in both groups of animals, however, HK1.bcl-2 mice exhibited a rate of conversion from benign papilloma to carcinoma 2.5 times greater than controls.^ Similar carcinogenesis experiments were performed using newborn mice. HK1.bcl-2 mice treated with UV-B plus TPA have a three fold greater incidence of tumor formation compared to controls littermates. HK1.bcl-2 transgenic animals also exhibited a shorter latency for papilloma formation when treated with DMBA plus TPA.^ HK1.bcl-2/v-Ha-ras double transgenic mice shared phenotypic features of both HK1.v-Ha-ras and HK1.bcl-2 transgenic mice, and exhibited focal areas of augmented hyperplasia. These double transgenic mice were susceptible to tumor formation by treatment with TPA alone.^ Cultures of primary keratinocytes were established from control, HK1.bcl-2, HK1.Ha-ras, and HK1.bcl-2/v-Ha-ras newborn mice. Cell viability was determined after exposure of the cells to UV-B irradiation, DMBA, TPA, or TGF-$\beta$1. Internucleosomal DNA fragmentation ("ladders") and morphological cellular changes compatible with apoptotic cell death were observed after the application of all these agents. HK1.bcl-2 keratinocytes were resistant to cell death induction by all of these agents except TGF-$\beta$1. HK1.Ha-ras cells had a higher spontaneous rate of cell death which could be compensated by co-expression of bcl-2.^ These findings suggest that bcl-2 dependent cell death suppression may be an important component of multistep skin carcinogenesis. ^
Resumo:
Despite multiple changes in the adjuvant chemotherapy regimens used to treat osteosarcoma (OS), the 2-year metastasis-free survival has remained at 65–70% for the past 10 years. Characterizing the molecular determinants that permit metastatic spread of tumor cells is a crucial element in developing new approaches for the treatment of osteosarcoma. Since OS metastasizes almost exclusively to the lung, an organ with constitutive Fas ligand (FasL) expression, we hypothesized that the expression of Fas (CD95, APO-1) by OS cells may play a role in the ability of these cells to form lung metastases. Fas expression was quantified in human SAOS-2 OS cells and selected variants (LM2, LM4, LM5, LM6, LM7). Using northern blot, FACS and RT-PCR analysis, low Fas expression was found to correlate with higher metastatic potential in these cell lines. The highly metastatic LM7 cell line was transfected with the full-length human Fas gene and injected into athymic nude mice. The median number of metastatic nodules per mouse fell from over 200 to 1.1 and the size of the nodules decreased from a range of 0.5–9.0 mm to less than 0.5 mm in the Fas-transfected cell line compared to the native LM7 cell line. Additionally, the subsequent incidence of lung metastases was lower in the Fas-expressing cell line. IL-12 was seen to upregulate Fas expression in the highly metastatic LM sublines in vitro. To visualize the effects of IL-12 in vivo, nude mice were injected with LM7 cells and treated biweekly for 4 weeks with Ad.mIL-12, saline control or Ad.βgal. Lung sections were analyzed via immunchistochemistry for Fas expression. A higher expression of Fas was found in tumors from mice receiving IL-12. To study the mechanism by which IL-12 upregulates Fas, LM7 cells were transfected with a luciferase reporter gene construct containing the full-length human fas promoter. Treatment with IL-12 increased luciferase activity. We therefore conclude that IL-12 influences the metastatic potential of OS cells by upregulating the fas promoter, resulting in increased cell surface Fas expression and susceptibility to Fas-induced cell death. ^
Resumo:
Microcell-mediated chromosome transfer is a method of gene transfer which allows for the introduction of single or small groups of intact chromosomes into recipient host cells. Microcell transfer was first performed by Fournier and Ruddle using rodent microcells and various recipient cells. Expansion of this technology to include the transfer of normal human genetic material has been hindered because large micronucleate populations from diploid human cells have been unobtainable. This dissertation research describes, however, the methods for production of micronuclei in 40-60% of normal human fibroblasts. Once micronucleate cells were obtained, they were enucleated by centrifugation in the presence of Cytochalasin B; the microcells were then purified and fused to recipient mouse (LMTK('-)) cells using a new fusion protocol employing polyethylene glycol containing phytohemagglutinin. Microcell clones were isolated from the HAT selection system. Alkaline Giemsa staining performed on these hybrids indicated the presence of a single human chromosome in each of seven microcell clones from three separate experiments. That chromosome was further identified by G banding analysis to be human chromosome #17, which codes for thymidine kinase. The time course for production of these hybrids from fusion to karyotypic analysis was 6 weeks. The viability of the transferred human genetic material was assessed by electrophoretic isozyme analysis.^ Subsequent experiments were performed in an attempt to optimize the transfer frequency for the thymidine kinase gene using this system. Results indicated that the frequency could be increased from < 1 x 10('-6) in initial experiments to 2 x 10('-5) in the latest experiment. Analyses were also conducted to determine the number of chromosomes per isolated microcell as well as to investigate the stability of the transferred human chromosome in the mouse genome. ^
Resumo:
The human choriocarcinoma cell line JEG-3 is heterozygous at the adenosine deaminase (ADA) gene locus. Both allelic genes are under strong but incomplete repression causing a very low level expression of the gene locus. Because cytotoxic adenosine analogues such as 9-(beta)-D arabinofuranosyladenine (ara-A) and 9-(beta)-D xylofuranosyladenine (xyl-A) can be specifically detoxified by the action of ADA, these analogues were used to select for JEG-3 derived cells which had increased ADA expression. When JEG-3 cells were subjected to a multi-step, successively increasing dosage of either ara-A or xyl-A, resistant cells with increased ADA expression were generated. This increased ADA expression in the resistant cells was unstable, so that when the selective pressure was removed, cellular ADA expression would decrease. Subclone analysis of xyl-A resistant cells revealed that compared to parental JEG-3 cells, individual resistant cells had either elevated ADA levels or decreased adenosine kinase (ADK) levels or both. This altered ADA and ADK expression in the resistant cells were found to be independent events. Because of high endogenous tissue conversion factor (TCF) expression in the JEG-3 cells, the allelic nature of the increased ADA expression in most of the resistant cells could not be determined. However, several resistant subcloned cells were found to have lost TCF expression. These TCF('-) cells expressed only the ADA*2 allelic gene product. Cell fusion experiments demonstrated that the ADA*1 allelic gene was intact and functional in the A3-1A7 cell line. Chromosomal analysis of the A3-1A7 cells showed that they had no double-minutes or homogeneously staining chromosomal regions, although a pair of new chromosomes were found in these cells. Segregation analysis of the hybrid cells indicated that an ADA*2 allelic gene was probably located on this new chromosome. The analysis of the A3-1A7 cell line suggested that the expression of only ADA 2 in these cells was the result of possibly a cis-deregulation of the ADA gene locus or more probably an amplification of the ADA*2 allelic gene. Two effective positive selection systems for ADA('+) cells were also developed and tested. These selection systems should eventually lead to the isolation of the ADA gene.^
Resumo:
The complement C3a anaphylatoxin is a major molecular mediator of innate immunity. It is a potent activator of mast cells, basophils and eosinophils and causes smooth muscle contraction. Structurally, C3a is a relatively small protein (77 amino acids) comprising a N-terminal domain connected by 3 native disulfide bonds and a helical C-terminal segment. The structural stability of C3a has been investigated here using three different methods: Disulfide scrambling; Differential CD spectroscopy; and Reductive unfolding. Two uncommon features regarding the stability of C3a and the structure of denatured C3a have been observed in this study. (a) There is an unusual disconnection between the conformational stability of C3a and the covalent stability of its three native disulfide bonds that is not seen with other disulfide proteins. As measured by both methods of disulfide scrambling and differential CD spectroscopy, the native C3a exhibits a global conformational stability that is comparable to numerous proteins with similar size and disulfide content, all with mid-point denaturation of [GdmCl](1/2) at 3.4-5M. These proteins include hirudin, tick anticoagulant protein and leech carboxypeptidase inhibitor. However, the native disulfide bonds of C3a is 150-1000 fold less stable than those proteins as evaluated by the method of reductive unfolding. The 3 native disulfide bonds of C3a can be collectively and quantitatively reduced with as low as 1mM of dithiothreitol within 5 min. The fragility of the native disulfide bonds of C3a has not yet been observed with other native disulfide proteins. (b) Using the method of disulfide scrambling, denatured C3a was shown to consist of diverse isomers adopting varied extent of unfolding. Among them, the most extensively unfolded isomer of denatured C3a is found to assume beads-form disulfide pattern, comprising Cys(36)-Cys(49) and two disulfide bonds formed by two pair of consecutive cysteines, Cys(22)-Cys(23) and Cys(56)-Cys(57), a unique disulfide structure of polypeptide that has not been documented previously.