4 resultados para Cell Mitosis
em DigitalCommons@The Texas Medical Center
Resumo:
The c-mos proto-oncogene, which is expressed at relatively high levels in male and female germ cells, plays a key role in oocyte meiotic maturation. The c-mos gene product in oocytes (p39$\sp{\rm c-mos}$) is necessary and sufficient to initiate meiosis. p39$\sp{\rm c-mos}$ is also an essential component of the cytostatic factor, which is responsible for arresting vertebrate oocytes at the second meiotic metaphase by stabilizing the maturation promoting factor (MPF). MPF is a universal regulator of both meiosis and mitosis. Much less is understood about c-mos expression and function in somatic cells. In addition to gonadal tissues, c-Mos has been detected in some somatic tissues and non-germ cell lines including NIH 3T3 cells as a protein termed p43$\sp{\rm c-mos}$. Since c-mos RNA transcripts were not previously detected in this cell line by Northern blot or S1 protection analyses, a search was made for c-mos RNA in NIH 3T3 cells. c-mos transcripts were detected using the highly sensitive RNA-PCR method and RNase protection assays. Furthermore, cell cycle analyses indicated that expression of c-mos RNA is tightly controlled in a cell cycle dependent manner with highest levels of transcripts (approximately 5 copies/cell) during the G2 phase.^ In order to determine the physiological significance of c-mos RNA expression in somatic cells, antisense mos was placed under the control of an inducible promoter and introduced into either NIH 3T3 cells or C2 cells. It was found that a basal level of expression of antisense mos resulted in interference with mitotic progression and growth arrest. Several nuclear abnormalities were observed, especially the appearance of binucleated and multinucleated cells as well as the extrusion of microvesicles containing cellular material. These results indicate that antisense mos expression results in a block in cytokinesis. In summary, these results establish that c-mos expression is not restricted to germ cells, but instead indicate that c-mos RNA expression occurs during the G2 stage of the cell cycle. Furthermore, these studies demonstrate that the c-mos proto-oncogene plays an important role in cell cycle progression. As in meiosis, c-mos may have a similar but not identical function in regulating cell cycle events in somatic cells, particularly in controlling mitotic progression via activation/stabilization of MPF. ^
Resumo:
A partial skb1 gene was originally isolated in a yeast two-hybrid screen for Shk1-interacting polypeptides. Shk1 is one of two Schizosaccharomyces pombe p21Cdc42/Rac-activated kinases (PAKs) and is an essential component of the Ras1-dependent signal transduction pathways regulating cell morphology and mating responses in fission yeast. After cloning the skb1 gene we found the Skb1 gene product to be a novel, nonessential protein lacking homology to previously characterized proteins. However the identification of Skb1 homologs in C. elegans, S. cerevisiae, and H. sapiens reveals evolution has conserved the skb1 gene. Fission yeast cells carrying a deletion of skb1 exhibit a defect in cell size but not mating abilities. This defect is suppressed by high copy shk1. Fission yeast overexpressing skb1 were found to undergo cell division at a length 1.5X greater than normal. In the two-hybrid system, Skb1 interacts with a subdomain of the Shk1 regulatory region distinct from that with which Cdc42 interacts, and forms a ternary complex with Shk1 and Cdc42. By use of yeast genetics, we have established a role for Skb1 as a positive regulator of Shk1. Co-overexpression of shk1 with skb1 was found to suppress the morphology defect, but not the sterility, of ras1Δ fission yeast. Thus, the function of Skb1 is restricted to a morphology control pathway. We determined that Skb1 functions as a negative regulator of mitosis and does this through a Shk1-dependent mechanism. The mitotic regulatory function of Skb1 and Shk1 was also partially dependent upon Wee1, a direct negative regulator of the cyclin-dependent kinase Cdc2. The role for Skb1 and Shk1 as mitotic regulators is the first connection from a PAK protein to control of the cell cycle. Furthermore, Skb1 is the first non-Cdc42/Rac PAK modulator to be identified. ^
Resumo:
Lung cancer is the leading cause of cancer death. However, poor survival using conventional therapies fuel the search for more rational interventions. The objective of this study was to design and implement a 4HPR-radiation interaction model in NSCLC, employing a traditional clinical modality (radiation), a relatively new, therapeutically unexplored agent (4HPR) and rationally combining them based on molecular mechanistic findings pertaining to their interactions. To test the hypothesis that 4HPR sensitizes cells to radiation-induced cell death via G2+M accumulation, we designed a working model consisting of H522 adenocarcinoma cells (p53, K-ras mutated) derived from an NSCLC patient; 4HPR at concentrations up to 10 μM; and X radiation up to 6 Gy generated by a patient-dedicated Phillips RT-250 X ray unit at 250 KV, 15 mA, 1.85 Gy/min. We found that 4HPR produced time- and dose-dependent morphological changes, growth inhibition, and DNA damage-inducing enhancement of reactive oxygen species. A transient G2+M accumulation of cells maximal at 24 h of continuous 4HPR exposure was used for irradiation time scheduling. Our data demonstrated enhanced cell death (both apoptotic and necrotic) in irradiated cells pre-treated with 4HPR versus those with either stressor alone. 4HPR's effect of increased NSCLC cells' radioresponse was confirmed by clonogenic assay. To explore these practical findings from a molecular mechanistic perspective, we further investigated and showed that levels of cyclin B1 and p34cdc2 kinase—both components of the mitosis promoting factor (MPF) regulating the G2/M transition—did not change following 4HPR treatment. Likewise, cdc25C phosphatase was not altered. However, enhanced p34cdc2 phosphorylation on its Thr14Tyr15 residues—indicative of its inactivation and increased expression of MPF negative regulators chk1 and wee1 kinases—were supportive of explaining 4HPR-treated cells' accumulation. Hence, p34cdc2 phosphorylation, chk1, and wee1 warrant further evaluation as potential molecular targets for 4HPR-X radiation combination. In summary, we (1) demonstrated that 4HPR not only induces cell death by itself, but also increases NSCLC cells' subsequent radioresponse, indicative of potential clinical applicability, and (2) for the first time, shed light on deciphering 4HPR-X radiation molecular mechanisms of interaction, including the finding of 4HPR's role as a p34cdc2 inactivator via Thr14Tyr15 phosphorylation. ^
Resumo:
Ras proteins (H-, N-, K4A-, and K4B) are associated with cellular resistance to ionizing radiation (IR) and, consequently, may provide a potential target for radiosensitization strategies in cancer treatment. Several approaches have been used to compromise Ras activity and enhance IR-induced cell killing; however, these techniques either target proteins in addition to Ras or only target one member of the Ras family. In this study, I have used an adenovirus (AV1Y28) that expresses a single-chain antibody fragment directed against Ras proteins to investigate the mechanism(s) responsible for Ras-mediated radiation resistance. AV1Y28 enhanced the radiosensitivity of a number of human tumor cell lines without affecting the radiosensitivity of normal human fibroblasts. Whereas AV1Y28-mediated sensitization was independent of ras gene mutational status, it was dependent on active Ras proteins suggesting that AV1Y28 may be useful against a broad range of tumors. AV1Y28-mediated cell killing was not the result of redistributing cells into a more radiosensitive phase of the cell cycle and did not enhance IR-induced apoptosis. Given that Ras proteins transduce environmental signals to the nucleus, the effect of AV1Y28 on the IR-inducible transcription factor NF-κB were determined. Although AV1Y28 inhibited IR-induced NF-κB through the suppression of IKK, additional work established that NF-κB did not play a role in AV1Y28-mediated radiosensitization. However, a novel component of the signaling pathway responsible for IR-induced NF-κB was identified. Previous studies had suggested a relationship between mutant ras genes and IR-induced G2 delay; therefore the effects of AV1Y28 on the progression of cells from G2 to M after IR were determined. Pretreatment of cells with AV1Y28 prevented the IR-induced G2 arrest. AV1Y28-mediated abrogation of IR-induced G2 arrest correlated with those cell line lines that were sensitized by AV1Y28. Moreover, a significant increase in cells undergoing mitotic catastrophe was found after IR in AV1Y28 treated cells. The abrogation of G2 arrest by AV1Y28 was the result of maintaining the active form of cdc2, an inducer of mitosis, after exposure to IR. This study identified the mechanism of AV1Y28-mediated radiosensitization and has provided insight into the signal transduction pathways responsible for Ras-mediated radiation resistance. ^