2 resultados para Cation hydrolysis

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this thesis lies in the development of a sensitive method for the analysis of protein primary structure which can be easily used to confirm the DNA sequence of a protein's gene and determine the modifications which are made after translation. This technique involves the use of dipeptidyl aminopeptidase (DAP) and dipeptidyl carboxypeptidase (DCP) to hydrolyze the protein and the mass spectrometric analysis of the dipeptide products.^ Dipeptidyl carboxypeptidase was purified from human lung tissue and characterized with respect to its proteolytic activity. The results showed that the enzyme has a relatively unrestricted specificity, making it useful for the analysis of the C-terminal of proteins. Most of the dipeptide products were identified using gas chromatography/mass spectrometry (GC/MS). In order to analyze the peptides not hydrolyzed by DCP and DAP, as well as the dipeptides not identified by GC/MS, a FAB ion source was installed on a quadrupole mass spectrometer and its performance evaluated with a variety of compounds.^ Using these techniques, the sequences of the N-terminal and C-terminal regions and seven fragments of bacteriophage P22 tail protein have been verified. All of the dipeptides identified in these analysis were in the same DNA reading frame, thus ruling out the possibility of a single base being inserted or deleted from the DNA sequence. The verification of small sequences throughout the protein sequence also indicates that no large portions of the protein have been removed after translation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian kidney maintains homeostasis of the extracellular environment and eliminates toxic substances from the body, in part via secretion by the organic cation transporters (OCT). Some nucleosides are also secreted by the kidney. Previous work indicated that the deoxyadenosine analog, 2′ -deoxytubercidin (dTub), is secreted by mouse kidney through the OCTs. This study examines the role of OCTs in the renal secretion of dTub and other nucleoside analogs. ^ Using the Xenopus laevis oocyte expression system, the basolateral type rat organic cation transporter rOCT1 was shown to transport dTub and other nucleosides. The positive charged form of dTub (dTub +) appears to be the substrate for rOCT1. Tetraethylammonium (TEA) and dTub competitively inhibit the other's uptake by rOCT1 in a manner consistent with their interaction at a common site. Although 67% homologous with rOCT1, rOCT2 does not mediate the uptake of these nucleosides. Kinetic studies demonstrated the difference in substrate specificity between rOCT1 and rOCT2 to be largely due to a poor affinity of rOCT2 for dTub+. This difference in affinity is located within transmembrane domains 2–7 as determined by chimeric constructs. ^ OCT1 knockout mice were used to evaluate the role of OCT1 in the renal secretion of dTub. No significant difference in tissue distribution and urinary excretion of dTub was observed between the knockout and wild-type mice, indicating that OCT1 is not necessary for the renal secretion of dTub. Apical transporters are postulated to participate in its active secretion. To characterize a possible apical transporter, we screened several renal cell lines for a nucleoside-sensitive OCT. American opossum kidney proximal tubule cells (OK) express a TEA efflux transporter that is inhibited by dTub and other nucleoside analogs. This carrier is metabolic-dependent and distinct from the cloned OCTs to date, i.e. it is sodium- and proton-independent. In conclusion, dTub is a good substrate for OCT1; however, this OCT is not necessary for its renal secretion in mice. The novel TEA efflux transporter identified in OK cells is likely to participate in the renal secretion of dTub and perhaps other nucleoside analogs. ^