2 resultados para Carroll

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

$\beta$1,4-Galactosyltransferase (GalTase) is unusual among the glycosyltransferases in that it is found in two subcellular compartments where it performs different functions. In the trans-Golgi complex, GalTase participates in oligosaccharide biosynthesis as do other glycosyltransferases. GalTase is also found on the cell surface, where it associates with the cytoskeleton and functions as a receptor for extracellular oligosaccharide ligands. Although we know much regarding GalTase function on the cell surface, little is known about the mechanisms underlying its transport to the plasma membrane. Cloning of the GalTase gene revealed that there are two GalTase proteins (i.e., long and short) with different size cytoplasmic tails. This raises the possibility that differences in the cytoplasmic domain of GalTase may influence its subcellular distribution. The object of this study was to examine this hypothesis directly through the use of molecular, immunological, and biochemical approaches.^ To examine whether the two GalTase proteins are targeted to different subcellular compartments, F9 embryonal carcinoma cells were transfected with either long or short GalTase cDNAs and intracellular and cell surface enzyme levels measured. Cell surface GalTase activity was enriched in cells overexpressing the long, but not the form of short GalTase. Furthermore, a dominant negative mutation in cell surface GalTase was created by transfecting cells with GalTase cDNAs encoding a truncated version of long GalTase devoid of the extracellular catalytic domain. Overexpressing the complete cytoplasmic and transmembrane domains of long GalTase led to a loss of GalTase-dependent cellular adhesion by specifically displacing surface GalTase from its cytoskeletal associations. In contrast, overexpressing the analogous truncated protein of short GalTase had no effect on cell adhesion. Finally, chloramphenicol acetyltransferase (CAT) reporter proteins were used to determine directly whether the cytoplasmic domains of long and short GalTase were responsible for differential subcellular distribution. The cytoplasmic and transmembrane domains of long GalTase led to CAT expression on the ceil surface and its association with the detergent-insoluble cytoskeleton; the analogous fusion protein containing short GalTase was restricted to the Golgi compartment. These results suggest that the cytoplasmic domain unique to long GalTase is responsible for targeting a portion of this protein to the cell surface and associating it with the cytoskeleton, enabling it to function as a cell adhesion molecule. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. In over 30 years, the prevalence of overweight for children and adolescents has increased across the United States (Barlow et al., 2007; Ogden, Flegal, Carroll, & Johnson, 2002). Childhood obesity is linked with adverse physiological and psychological issues in youth and affects ethnic/minority populations in disproportionate rates (Barlow et al., 2007; Butte et al., 2006; Butte, Cai, Cole, Wilson, Fisher, Zakeri, Ellis, & Comuzzie, 2007). More importantly, overweight in children and youth tends to track into adulthood (McNaughton, Ball, Mishra, & Crawford, 2008; Ogden et al., 2002). Childhood obesity affects body functions such as the cardiovascular, respiratory, gastrointestinal, and endocrine systems, including emotional health (Barlow et al., 2007, Ogden et al., 2002). Several dietary factors have been associated with the development of obesity in children; however, these factors have not been fully elucidated, especially in ethnic/minority children. In particular, few studies have been done to determine the effects of different meal patterns on the development of obesity in children. Purpose. The purpose of the study is to examine the relationships between daily proportions of energy consumed and energy derived from fat across breakfast, lunch, dinner, and snack, and obesity among Hispanic children and adolescents. Methods. A cross-sectional design was used to evaluate the relationship between dietary patterns and overweight status in Hispanic children and adolescents 4-19 years of age who participated in the Viva La Familia Study. The goal of the Viva La Familia Study was to evaluate genetic and environmental factors affecting childhood obesity and its co-morbidities in the Hispanic population (Butte et al., 2006, 2007). The study enrolled 1030 Hispanic children and adolescents from 319 families and examined factors related to increased body weight by focusing on a multilevel analysis of extensive sociodemographic, genetic, metabolic, and behavioral data. Baseline dietary intakes of the children were collected using 24-hour recalls, and body mass index was calculated from measured height and weight, and classified using the CDC standards. Dietary data were analyzed using a GEE population-averaged panel-data model with a cluster variable family identifier to include possible correlations within related data sets. A linear regression model was used to analyze associations of dietary patterns using possible covariates, and to examine the percentage of daily energy coming from breakfast, lunch, dinner, and snack while adjusting for age, sex, and BMI z-score. Random-effects logistic regression models were used to determine the relationship of the dietary variables with obesity status and to understand if the percent energy intake (%EI) derived from fat from all meals (breakfast, lunch, dinner, and snacks) affected obesity. Results. Older children (age 4-19 years) consumed a higher percent of energy at lunch and dinner and less percent energy from snacks compared to younger children. Age was significantly associated with percentage of total energy intake (%TEI) for lunch, as well as dinner, while no association was found by gender. Percent of energy consumed from dinner significantly differed by obesity status, with obese children consuming more energy at dinner (p = 0.03), but no associations were found between percent energy from fat and obesity across all meals. Conclusions. Information from this study can be used to develop interventions that target dietary intake patterns in obesity prevention programs for Hispanic children and adolescents. In particular, intervention programs for children should target dietary patterns with energy intake that is spread throughout the day and earlier in the day. These results indicate that a longitudinal study should be used to further explore the relationship of dietary patterns and BMI in this and other populations (Dubois et al., 2008; Rodriquez & Moreno, 2006; Thompson et al., 2005; Wilson et al., in review, 2008). ^