10 resultados para Carcinogens
em DigitalCommons@The Texas Medical Center
Resumo:
It has been hypothesized that results from the short term bioassays will ultimately provide information that will be useful for human health hazard assessment. Although toxicologic test systems have become increasingly refined, to date, no investigator has been able to provide qualitative or quantitative methods which would support the use of short term tests in this capacity.^ Historically, the validity of the short term tests have been assessed using the framework of the epidemiologic/medical screens. In this context, the results of the carcinogen (long term) bioassay is generally used as the standard. However, this approach is widely recognized as being biased and, because it employs qualitative data, cannot be used in the setting of priorities. In contrast, the goal of this research was to address the problem of evaluating the utility of the short term tests for hazard assessment using an alternative method of investigation.^ Chemical carcinogens were selected from the list of carcinogens published by the International Agency for Research on Carcinogens (IARC). Tumorigenicity and mutagenicity data on fifty-two chemicals were obtained from the Registry of Toxic Effects of Chemical Substances (RTECS) and were analyzed using a relative potency approach. The relative potency framework allows for the standardization of data "relative" to a reference compound. To avoid any bias associated with the choice of the reference compound, fourteen different compounds were used.^ The data were evaluated in a format which allowed for a comparison of the ranking of the mutagenic relative potencies of the compounds (as estimated using short term data) vs. the ranking of the tumorigenic relative potencies (as estimated from the chronic bioassays). The results were statistically significant (p $<$.05) for data standardized to thirteen of the fourteen reference compounds. Although this was a preliminary investigation, it offers evidence that the short term test systems may be of utility in ranking the hazards represented by chemicals which may be human carcinogens. ^
Resumo:
Glutathione S-transferase (GST) genes detoxify and metabolize carcinogens, including oxygen free radicals which may contribute to salivary gland carcinogenesis. This cancer center-based case-control association study included 166 patients with incident salivary gland carcinoma (SGC) and 511 cancer-free controls. We performed multiplex polymerase chain reaction-based polymorphism genotyping assays for GSTM1 and GSTT1 null genotypes. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated with multivariable logistic regression analyses adjusted for age, sex, ethnicity, tobacco use, family history of cancer, alcohol use and radiation exposure. In our results, 27.7% of the SGC cases and 20.6% of the controls were null for the GSTT1 (P = 0.054), and 53.0% of the SGC cases and 50.9% of the controls were null for the GSTM1 (P = 0.633). The results of the adjusted multivariale regression analysis suggested that having GSTT1 null genotype was associated with a significantly increased risk for SGC (odds ratio 1.5, 95% confidence interval 1.0-2.3). Additionally, 13.9% of the SGC cases but only 8.4% of the controls were null for both genes and the results of the adjusted multivariable regression analysis suggested that having both null genotypes was significantly associated with an approximately 2-fold increased risk for SGC (odds ratio 1.9, 95% confidence interval 1.0-3.5). The presence of GSTT1 null genotype and the simultaneous presence of GSTM1 and GSTT1 null genotypes appear associated with significantly increased SGC risk. These findings warrant further study with larger sample sizes.
Resumo:
Individuals with Lynch syndrome are predisposed to cancer due to an inherited DNA mismatch repair gene mutation. However, there is significant variability observed in disease expression likely due to the influence of other environmental, lifestyle, or genetic factors. Polymorphisms in genes encoding xenobiotic-metabolizing enzymes may modify cancer risk by influencing the metabolism and clearance of potential carcinogens from the body. In this retrospective analysis, we examined key candidate gene polymorphisms in CYP1A1, EPHX1, GSTT1, GSTM1, and GSTP1 as modifiers of age at onset of colorectal cancer among 257 individuals with Lynch syndrome. We found that subjects heterozygous for CYP1A1 I462V (c.1384A>G) developed colorectal cancer 4 years earlier than those with the homozygous wild-type genotype (median ages, 39 and 43 years, respectively; log-rank test P = 0.018). Furthermore, being heterozygous for the CYP1A1 polymorphisms, I462V and Msp1 (g.6235T>C), was associated with an increased risk for developing colorectal cancer [adjusted hazard ratio for AG relative to AA, 1.78; 95% confidence interval, 1.16-2.74; P = 0.008; hazard ratio for TC relative to TT, 1.53; 95% confidence interval, 1.06-2.22; P = 0.02]. Because homozygous variants for both CYP1A1 polymorphisms were rare, risk estimates were imprecise. None of the other gene polymorphisms examined were associated with an earlier onset age for colorectal cancer. Our results suggest that the I462V and Msp1 polymorphisms in CYP1A1 may be an additional susceptibility factor for disease expression in Lynch syndrome because they modify the age of colorectal cancer onset by up to 4 years.
Resumo:
We have developed a novel way to assess the mutagenicity of environmentally important metal carcinogens, such as nickel, by creating a positive selection system based upon the conditional expression of a retroviral transforming gene. The target gene is the v-mos gene in MuSVts110, a murine retrovirus possessing a growth temperature dependent defect in expression of the transforming gene due to viral RNA splicing. In normal rat kidney cells infected with MuSVts110 (6m2 cells), splicing of the MuSVts110 RNA to form the mRNA from which the transforming protein, p85$\sp{\rm gag-mos}$, is translated is growth-temperature dependent, occurring at 33 C and below but not at 39 C and above. This splicing "defect" is mediated by cis-acting viral sequences. Nickel chloride treatment of 6m2 cells followed by growth at 39 C, allowed the selection of "revertant" cells which constitutively express p85$\sp{\rm gag-mos}$ due to stable changes in the viral RNA splicing phenotype, suggesting that nickel, a carcinogen whose mutagenicity has not been well established, could induce mutations in mammalian genes. We also show by direct sequencing of PCR-amplified integrated MuSVts110 DNA from a 6m2 nickel-revertant cell line that the nickel-induced mutation affecting the splicing phenotype is a cis-acting 70-base duplication of a region of the viral DNA surrounding the 3$\sp\prime$ splice site. These findings provide the first example of the molecular basis for a nickel-induced DNA lesion and establish the mutagenicity of this potent carcinogen. ^
Resumo:
The human GSTP1 gene has been shown, conclusively, to be polymorphic. The three main GSTP1 alleles, GSTP1*A, GSTP1*B, and GSTP1*C, encode proteins which differ in the 3-dimensional structure of their active sites and in their function in phase II metabolism of carcinogens, mutagens, and anticancer agents. Although, it is well established that GSTP1 is over expressed in many human tumors and that the levels of GSTP1 expression correlate directly with tumor resistance to chemotherapy and inversely with patient survival, the significance of the polymorphic GSTP1 gene locus on tumor response to chemotherapy remains unclear. The goal of this project was to define the role and significance of the polymorphic GSTP1 gene locus in GSTP1-based tumor drug resistance and as a determinant of patient response to chemotherapy. The hypothesis to be tested was that the polymorphic GSTP1 gene locus will confer to tumors a differential ability to metabolize cisplatin resulting in a GSTP1 genotype-based sensitivity to cisplatin. The study examined: (a) whether the different GSTP 1 alleles confer different levels of cellular protection against cisplatin-induced cytotoxicity, (b) whether the allelic GSTP1 proteins metabolize cisplatin with different efficiencies, and (c) whether the GSTP1 genotype is a determinant of tumor response to cisplatin therapy. The results demonstrate that the GSTP1 alleles differentially protect tumors against cisplatin-induced apoptosis and clonogenic cell kill in the rank order: GSTP1*C > GSTP1*B > GSTP1*A. The same rank order was observed for the kinetics of GSTP1-catalyzed cisplatin metabolism, both in cell-free and cellular systems, to the rate-limiting monoglutathionyl-platinum metabolite, which was characterized, for the first time, by mass spectral analysis. Finally, this study demonstrates that both GSTP1 genotype and the level of GSTP1 expression significantly contribute to tumor sensitivity to cisplatin treatment. Overall, the results of this project show that the polymorphic GSTP1 gene locus plays a significant role in tumor sensitivity to cisplatin treatment. Furthermore, these studies have contributed to the overall understanding of the significance of the polymorphic GSTP1 gene locus in tumor resistance to cancer chemotherapy and have provided the basis for further investigations into how this can be utilized to optimize and individualize cancer chemotherapy for cancer patients. ^
Resumo:
Cytochrome P450s, a superfamily of heme enzymes found in most living organisms. They are responsible for metabolism of many therapeutic drugs, industrial pollutants, carcinogens, and additives to foodstuffs, as well as some endogenous compounds including fatty acids and steroids. First pass drug metabolism studies represent mainly liver and small intestine elimination, and are viewed as the standard to predict therapeutic outcome. However, drug plasma levels determined after administration do not always correlate with therapeutic efficacy of the drug. Therefore, a possible explanation may come by understanding drug metabolism in extrahepatic tissues and/or at the site of drug action. Identification and characterization of novel tissue specific isoforms of P450 generated by alternative splicing of known P450 genes or as yet unidentified genes is essential to predict pharmacological outcome of drugs or the fate of a carcinogen that act at sites remote from liver. ^ Using RT-PCR, brain-specific cytochrome P450s were detected in samples of human autopsy brain. So far, we have identified two human brain variants including P450 2D7 and P450 1A1. We have shown the presence of the P450 1A1 brain specific splice variant in African Americans, Caucasians and Indians albeit different patterns of liver to brain variant ratio were seen distributed throughout each population. Interestingly, the splice variant was detected only in the brain but not in any other tissues from the same individual. Homology modeling was used to compare the variant 3D structure to the liver form structure and differences in the substrate access channels and substrate binding sites were noticed. Automated computational docking was used to predict the metabolic fate of the potent carcinogenic substrate, benzo[a]pyrene. P450 1A1 brain variant showed no binding orientations that could produce the active metabolite, whereas P450 1A1 liver form did reveal orientations capable of generating active carcinogenic product. In vitro P32 labeling studies verified the docking predictions. Therefore, the data support the hypothesis that P450 brain splice variants mediate the metabolism of xenobiotics by mechanisms distinct from the well-studied liver counterparts. ^
Resumo:
Lynch syndrome, is caused by inherited germ-line mutations in the DNA mismatch repair genes resulting in cancers at an early age, predominantly colorectal (CRC) and endometrial cancers. Though the median age at onset for CRC is about 45 years, disease penetrance varies suggesting that cancer susceptibility may be modified by environmental or other low-penetrance genes. Genetic variation due to polymorphisms in genes encoding metabolic enzymes can influence carcinogenesis by alterations in the expression and activity level of the enzymes. Variation in MTHFR, an important folate metabolizing enzyme can affect DNA methylation and DNA synthesis and variation in xenobiotic-metabolizing enzymes can affect the metabolism and clearance of carcinogens, thus modifying cancer risk. ^ This study examined a retrospective cohort of 257 individuals with Lynch syndrome, for polymorphisms in genes encoding xenobiotic-metabolizing enzymes-- CYP1A1 (I462V and MspI), EPHX1 (H139R and Y113H), GSTP1 (I105V and A114V), GSTM1 and GSTT1 (deletions) and folate metabolizing enzyme--MTHFR (C677T and A1298C). In addition, a series of 786 cases of sporadic CRC were genotyped for CYP1A1 I462V and EPHX1 Y113H to assess gene-gene interaction and gene-environment interaction with smoking in a case-only analysis. ^ Prominent findings of this study were that the presence of an MTHFR C677T variant allele was associated with a 4 year later age at onset for CRC on average and a reduced age-associated risk for developing CRC (Hazard ratio: 0.55; 95% confidence interval: 0.36–0.85) compared to the absence of any variant allele in individuals with Lynch syndrome. Similarly, Lynch syndrome individuals heterozygous for CYP1A1 I462V A>G polymorphism developed CRC an average of 4 years earlier and were at a 78% increased age-associated risk (Hazard ratio for AG relative to AA: 1.78; 95% confidence interval: 1.16-2.74) than those with the homozygous wild-type genotype. Therefore these two polymorphisms may be additional susceptibility factors for CRC in Lynch syndrome. In the case-only analysis, evidence of gene-gene interaction was seen between CYP1A1 I462V and EPHX1 Y113H and between EPHX1 Y113H and smoking suggesting that genetic and environmental factors may interact to increase sporadic CRC risk. Implications of these findings are the ability to identify subsets of high-risk individuals for targeted prevention and intervention. ^
Resumo:
The Houston region is home to arguably the largest petrochemical and refining complex anywhere. The effluent of this complex includes many potentially hazardous compounds. Study of some of these compounds has led to recognition that a number of known and probable carcinogens are at elevated levels in ambient air. Two of these, benzene and 1,3-butadiene, have been found in concentrations which may pose health risk for residents of Houston.^ Recent popular journalism and publications by local research institutions has increased the interest of the public in Houston's air quality. Much of the literature has been critical of local regulatory agencies' oversight of industrial pollution. A number of citizens in the region have begun to volunteer with air quality advocacy groups in the testing of community air. Inexpensive methods exist for monitoring of ozone, particulate matter and airborne toxic ambient concentrations. This study is an evaluation of a technique that has been successfully applied to airborne toxics.^ This technique, solid phase microextraction (SPME), has been used to measure airborne volatile organic hydrocarbons at community-level concentrations. It is has yielded accurate and rapid concentration estimates at a relatively low cost per sample. Examples of its application to measurement of airborne benzene exist in the literature. None have been found for airborne 1,3-butadiene. These compounds were selected for an evaluation of SPME as a community-deployed technique, to replicate previous application to benzene, to expand application to 1,3-butadiene and due to the salience of these compounds in this community. ^ This study demonstrates that SPME is a useful technique for quantification of 1,3-butadiene at concentrations observed in Houston. Laboratory background levels precluded recommendation of the technique for benzene. One type of SPME fiber, 85 μm Carboxen/PDMS, was found to be a sensitive sampling device for 1,3-butadiene under temperature and humidity conditions common in Houston. This study indicates that these variables affect instrument response. This suggests the necessity of calibration within specific conditions of these variables. While deployment of this technique was less expensive than other methods of quantification of 1,3-butadiene, the complexity of calibration may exclude an SPME method from broad deployment by community groups.^
Resumo:
Previous research supports the hypothesis that a "rich" diet (i.e., high in fat and low in fiber) increases the risk of colon cancer. Previous research also supports the hypothesis that physical inactivity increases the risk of colon cancer, perhaps because physical inactivity decreases gut motility, thereby increasing tee time that carcinogens are in contact with the intestinal mucosa. Habitual physical inactivity, combined with rich diet, ordinarily results in chronic energy imbalance and gain in weight, except when energy balance is modified by disease or factors such as cigarette smoking. Cigarette smokers typically stay lean because of effects of smoking on the resting metabolic rate as well as on efficiency of caloric intake and storage. Therefore, if physical inactivity and rich diet do increase the risk of colon cancer, then weight gain during young adulthood should be positively associated with incidence of colon cancer during later life, especially in nonsmokers.^ This hypothesis was investigated in a cohort of 2,059 randomly selected middle-aged men who were employed at the Western Electric Company in Chicago and were free of clinically diagnosed cancer at initial examination in 1958. Body mass index (BMI) in middle age was calculated from measured height and weight at the initial examination. BMI at age 20 was estimated from weight at age 20 as recalled at the initial examination and height as measured at the initial examination. Change in BMI between age 20 and middle age was estimated by subtracting the BMI at 20 from the BMI in middle age. Forty-nine incident cases of colon cancer were detected during 25 years (43,326 person-years) at risk. When stratified by level of change in BMI from age 20 to middle age ($\le$1.9, 2.0-3.9, 4.0-5.9, $\ge$6.0 kg/m$\sp2$), age-adjusted relative hazards of colon cancer in never-smokers were 1.00, 1.22, 2.31, and 5.01, respectively (p for trend = 0.008); corresponding values in ever-smokers were 1.00, 0.95, 0.77, and 0.87, These associations did not change appreciably after further adjustment for BMI at age 20, subscapular-triceps skinfold ratio, cigarette smoking, consumption of alcohol, energy, fat, and calcium.^ We also investigated the hypothesis that the risk of colon cancer was higher in men who were lean at age 20 and became fat by middle age (lean-to-fat) than in men who were fat at age 20 and stayed fat in middle-age (fat-to-fat). "Lean" was defined as BMI $<$24 kg/m$\sp2$ at age 20 and as BMI $<$27.0 kg/m$\sp2$ in middle age. Among never-smokers, in comparison to men who were lean at age 20 and in middle age (lean-to-lean), the age-adjusted relative hazard of colon cancer was 1.43 in the fat-to-fat group (95% confidence interval (CI) 0.37-5.52) and 3.36 in the lean-to-fat group (95% CI 1.21-9.37). This investigation provides new results on the magnitude of risk of colon cancer associated with weight gain during adulthood (from age 20 to middle age). This relation was obscured or underestimated in previous studies due to effect-modification by cigarette smoking. Finally, the result supports the idea that a life-style characterized by chronic energy imbalance during young adulthood increases risk of colon cancer. ^
Resumo:
Conservative procedures in low-dose risk assessment are used to set safety standards for known or suspected carcinogens. However, the assumptions upon which the methods are based and the effects of these methods are not well understood.^ To minimize the number of false-negatives and to reduce the cost of bioassays, animals are given very high doses of potential carcinogens. Results must then be extrapolated to much smaller doses to set safety standards for risks such as one per million. There are a number of competing methods that add a conservative safety factor into these calculations.^ A method of quantifying the conservatism of these methods was described and tested on eight procedures used in setting low-dose safety standards. The results using these procedures were compared by computer simulation and by the use of data from a large scale animal study.^ The method consisted of determining a "true safe dose" (tsd) according to an assumed underlying model. If one assumed that Y = the probability of cancer = P(d), a known mathematical function of the dose, then by setting Y to some predetermined acceptable risk, one can solve for d, the model's "true safe dose".^ Simulations were generated, assuming a binomial distribution, for an artificial bioassay. The eight procedures were then used to determine a "virtual safe dose" (vsd) that estimates the tsd, assuming a risk of one per million. A ratio R = ((tsd-vsd)/vsd) was calculated for each "experiment" (simulation). The mean R of 500 simulations and the probability R $<$ 0 was used to measure the over and under conservatism of each procedure.^ The eight procedures included Weil's method, Hoel's method, the Mantel-Byran method, the improved Mantel-Byran, Gross's method, fitting a one-hit model, Crump's procedure, and applying Rai and Van Ryzin's method to a Weibull model.^ None of the procedures performed uniformly well for all types of dose-response curves. When the data were linear, the one-hit model, Hoel's method, or the Gross-Mantel method worked reasonably well. However, when the data were non-linear, these same methods were overly conservative. Crump's procedure and the Weibull model performed better in these situations. ^