5 resultados para Canine Osteosarcoma

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to determine the effects of the histone deacetylase inhibitor, MS-275, on the Fas signaling pathway and susceptibility of osteosarcoma (OS) to Fas ligand (FasL)-induced cell death. OS metastasizes almost exclusively to the lungs. We have shown that Fas expression in OS cells is inversely correlated with their metastatic potential. Fas+ cells are rapidly eliminated when they enter the lungs via interaction with FasL, which is constitutively expressed in the lungs. Fas- OS cells escape this FasL-induced apoptosis and survive in the lung microenvironment. Moreover, upregulation of Fas in established OS lung metastases results in tumor regression. Therefore, agents that upregulate Fas expression or activate the Fas signaling pathway may have therapeutic potential. Treatment of Fas- metastatic OS cell lines with 2 μM MS-275 sensitized cells to FasL-induced cell death in vitro. We found that MS-275 did not alter the expression of Fas on the cell surface; rather it resulted in increased levels of Fas within the membrane lipid rafts, as demonstrated by an increase in Fas expression in detergent insoluble lipid raft fractions. We further demonstrated that following MS-275 treatment, Fas colocalized with GM1+ lipid rafts and that there was a decrease in c-FLIP (cellular FLICE-inhibitory protein) mRNA and protein. Downregulation of c-FLIP correlated with caspase activation and apoptosis induction. Transfection of cells with shRNA to c-FLIP also resulted in the localization of Fas to lipid rafts. These studies indicate that MS-275 sensitizes OS cells to FasL by upregulating the expression of Fas in membrane lipid rafts, which correlated with the downregulation of c-FLIP. Treatment of nu/nu-mice with established OS lung metastases with oral MS-275 resulted in increased apoptosis, a significant inhibition of c-FLIP expression in tumors and tumor regression. Histopathological examination of mice showed no significant organ toxicity. Overall, these results suggest that the mechanism by which MS-275 sensitizes OS cells and lung metastases to FasL-induced cell death may be by a reduction in the expression of c-FLIP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor-specific loss of constitutional heterozygosity by deletion, mitotic recombination or nondisjunction is a common mechanism for tumor suppressor allele inactivation. When loss of heterozygosity is the result of mitotic recombination, or a segmental deletion event, only a portion of the chromosome is lost. This information can be used to map the location of new tumor suppressor genes. In osteosarcoma, the highest frequencies of loss of heterozygosity have been reported for chromosomes 3q, 13q, 17p. On chromosomes 13q and 17p, allelic losses are associated with loss of function at the retinoblastoma susceptibility locus (RB1) and the p53 locus, respectively. Chromosome 3q is also of particular interest because the high percent of loss of heterozygosity (62%-75%) suggests the presence of another tumor suppressor important for osteosarcoma tumorigenesis. To localize this putative tumor suppressor gene, we used polymorphic markers on chromosome 3q to find the smallest common region of allele loss. This putative tumor suppressor was localized to a 700 kb region on chromosome 3q26.2 between the polymorphic loci D3S1282 and D3S1246. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteosarcoma, a malignant bone tumor, rapidly destroys the cortical bone. We demonstrated that mouse K7M2 osteosarcoma cells were deficient in osterix (osx), a zinc finger-containing transcription factor required for osteoblasts differentiation and bone formation. These cells formed lytic tumors when injected into the tibia. The destruction of bone is mediated by osteoclasts in osteosarcoma. The less expression of osterix with osteolytic phenotype was also observed in more tumor cell lines. Replacement of osterix in K7M2 cells suppressed lytic bone destruction, inhibited tumor growth in vitro and in vivo, and suppressed lung metastasis in vivo and the migration of K7M2 to lung conditioned medium in vitro. By contrast, inhibiting osterix by vector-based small interfering RNA (siRNA) in two cell lines (Dunn and DLM8) that expressed high levels of osterix converted osteoblastic phenotype to lytic. Recognizing and binding of Receptor Activator of NF-κB (RANK) on osteoclast precursors by its ligand RANKL is the key osteoclastogenic event. Increased RANKL results in more osteoclast activity. We investigated whether K7M2-mediated bone destruction was secondary to an effect on RANKL. The conditioned medium from K7M2 could upregulate RANKL in normal osteoblast MC3T3, which might lead to more osteoclast formation. By contrast, the conditioned medium from K7M2 cells transfected with osx-expressing plasmid did not upregulate RANKL. Furthermore, Interleukin-1alpha (IL-1α) was significantly suppressed following osx transfection. IL-1α increased RANKL expression in MC3T3 cells, suggesting that osx may control RANKL via a mechanism involving IL-1α. Using a luciferase reporter assay, we demonstrated that osx downregulated IL-1α through a transcription-mediated mechanism. Following suppression of osterix in Dunn and DLM8 cells led to enhanced IL-1α promoter activity and protein production. Site-directed mutagenesis and Chromatin immunoprecipitation (ChIP) indicated that osterix downregulated IL-1α through a Sp1-binding site on the IL-1α promoter. These data suggest that osterix is involved in the lytic phenotype of osteosarcoma and that this is mediated via transcriptional repression of IL-1α. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stomach is thought to be protected from luminal acid by a gastric mucosal barrier that restricts the diffusion of acid into tissue. This study tested the hypothesis that the hydrophobic luminal surface of canine gastric mucosa incubated in Ussing chambers, impedes the back-diffusion of luminal acid into the tissue. Isolated sheets of mucosa were treated with cimetidine to inhibit spontaneous acid secretion, and incubated under conditions that prevented significant secretion of luminal bicarbonate. By measuring acid loss from the luminal compartment using the pH-stat technique, acid back-diffusion was continuously monitored; potential difference (PD) was measured as an index of tissue viability. Tissue luminal surface hydrophobicity was estimated by contact angle analysis at the end of each experiment. Addition of 16,16-dimethyl prostaglandin E$\sb2$ to the nutrient compartment enhanced luminal surface hydrophobicity, but did not reduce acid back-diffusion in tissues that maintained a constant PD. 10 mM salicylate at pH 4.00 in the luminal compartment reduced surface hydrophobicity, but this decrease did not occur if 1 ug/ml prostaglandin was present in the nutrient solution. Despite possessing relatively hydrophilic and relatively hydrophobic surface properties, respectively, acid back-diffusion in the absence of salicylate was not significantly different between these two groups. Neither group maintained a PD after incubation with salicylate. Lastly, radiolabelled salicylate was used to calculate the free (non-salicylate associated) acid loss in tissues incubated with salicylate and/or prostaglandin. No significant correlation was found between free acid back-diffusion and luminal surface hydrophobicity. These data do not support the hypothesis that acid back-diffusion in impeded by the hydrophobic surface presented by isolated canine gastric mucosa. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite multiple changes in the adjuvant chemotherapy regimens used to treat osteosarcoma (OS), the 2-year metastasis-free survival has remained at 65–70% for the past 10 years. Characterizing the molecular determinants that permit metastatic spread of tumor cells is a crucial element in developing new approaches for the treatment of osteosarcoma. Since OS metastasizes almost exclusively to the lung, an organ with constitutive Fas ligand (FasL) expression, we hypothesized that the expression of Fas (CD95, APO-1) by OS cells may play a role in the ability of these cells to form lung metastases. Fas expression was quantified in human SAOS-2 OS cells and selected variants (LM2, LM4, LM5, LM6, LM7). Using northern blot, FACS and RT-PCR analysis, low Fas expression was found to correlate with higher metastatic potential in these cell lines. The highly metastatic LM7 cell line was transfected with the full-length human Fas gene and injected into athymic nude mice. The median number of metastatic nodules per mouse fell from over 200 to 1.1 and the size of the nodules decreased from a range of 0.5–9.0 mm to less than 0.5 mm in the Fas-transfected cell line compared to the native LM7 cell line. Additionally, the subsequent incidence of lung metastases was lower in the Fas-expressing cell line. IL-12 was seen to upregulate Fas expression in the highly metastatic LM sublines in vitro. To visualize the effects of IL-12 in vivo, nude mice were injected with LM7 cells and treated biweekly for 4 weeks with Ad.mIL-12, saline control or Ad.βgal. Lung sections were analyzed via immunchistochemistry for Fas expression. A higher expression of Fas was found in tumors from mice receiving IL-12. To study the mechanism by which IL-12 upregulates Fas, LM7 cells were transfected with a luciferase reporter gene construct containing the full-length human fas promoter. Treatment with IL-12 increased luciferase activity. We therefore conclude that IL-12 influences the metastatic potential of OS cells by upregulating the fas promoter, resulting in increased cell surface Fas expression and susceptibility to Fas-induced cell death. ^