13 resultados para Cancer metabolism
em DigitalCommons@The Texas Medical Center
Resumo:
Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates c-Myc-induced metabolic target genes expression. Therefore, 14-3-3σ remarkably blocks glycolysis, decreases glutaminolysis and diminishes mitochondrial mass of cancer cells both in vitro and in vivo, thereby severely suppressing cancer bioenergetics and metabolism. As a result, a high level of 14-3-3σ in tumors is strongly associated with increased breast cancer patients’ overall and metastasis-free survival as well as better clinical outcomes. Thus, this study reveals a new role for 14-3-3s as a significant regulator of cancer bioenergetics and a promising target for the development of anti-cancer metabolism therapies.
Resumo:
Complex diseases, such as cancer, are caused by various genetic and environmental factors, and their interactions. Joint analysis of these factors and their interactions would increase the power to detect risk factors but is statistically. Bayesian generalized linear models using student-t prior distributions on coefficients, is a novel method to simultaneously analyze genetic factors, environmental factors, and interactions. I performed simulation studies using three different disease models and demonstrated that the variable selection performance of Bayesian generalized linear models is comparable to that of Bayesian stochastic search variable selection, an improved method for variable selection when compared to standard methods. I further evaluated the variable selection performance of Bayesian generalized linear models using different numbers of candidate covariates and different sample sizes, and provided a guideline for required sample size to achieve a high power of variable selection using Bayesian generalize linear models, considering different scales of number of candidate covariates. ^ Polymorphisms in folate metabolism genes and nutritional factors have been previously associated with lung cancer risk. In this study, I simultaneously analyzed 115 tag SNPs in folate metabolism genes, 14 nutritional factors, and all possible genetic-nutritional interactions from 1239 lung cancer cases and 1692 controls using Bayesian generalized linear models stratified by never, former, and current smoking status. SNPs in MTRR were significantly associated with lung cancer risk across never, former, and current smokers. In never smokers, three SNPs in TYMS and three gene-nutrient interactions, including an interaction between SHMT1 and vitamin B12, an interaction between MTRR and total fat intake, and an interaction between MTR and alcohol use, were also identified as associated with lung cancer risk. These lung cancer risk factors are worthy of further investigation.^
Resumo:
Individuals with Lynch syndrome are predisposed to cancer due to an inherited DNA mismatch repair gene mutation. However, there is significant variability observed in disease expression likely due to the influence of other environmental, lifestyle, or genetic factors. Polymorphisms in genes encoding xenobiotic-metabolizing enzymes may modify cancer risk by influencing the metabolism and clearance of potential carcinogens from the body. In this retrospective analysis, we examined key candidate gene polymorphisms in CYP1A1, EPHX1, GSTT1, GSTM1, and GSTP1 as modifiers of age at onset of colorectal cancer among 257 individuals with Lynch syndrome. We found that subjects heterozygous for CYP1A1 I462V (c.1384A>G) developed colorectal cancer 4 years earlier than those with the homozygous wild-type genotype (median ages, 39 and 43 years, respectively; log-rank test P = 0.018). Furthermore, being heterozygous for the CYP1A1 polymorphisms, I462V and Msp1 (g.6235T>C), was associated with an increased risk for developing colorectal cancer [adjusted hazard ratio for AG relative to AA, 1.78; 95% confidence interval, 1.16-2.74; P = 0.008; hazard ratio for TC relative to TT, 1.53; 95% confidence interval, 1.06-2.22; P = 0.02]. Because homozygous variants for both CYP1A1 polymorphisms were rare, risk estimates were imprecise. None of the other gene polymorphisms examined were associated with an earlier onset age for colorectal cancer. Our results suggest that the I462V and Msp1 polymorphisms in CYP1A1 may be an additional susceptibility factor for disease expression in Lynch syndrome because they modify the age of colorectal cancer onset by up to 4 years.
Resumo:
Cachexia is very common among patients with advanced pancreatic cancer and is a marker of poor prognosis. Weight loss in cachexia is due to both adipose and muscle compartments, and sarcopenia (severe muscle depletion) is associated with worse outcomes. Curcumin has shown a myriad of biological effects, including anti-cancer and anti-inflammatory. The ability of curcumin to attenuate cachexia and muscle loss has been tested in animal models, with conflicting results so far. The hypothesis of this study was that patients with advanced pancreatic cancer treated with curcumin for two months have less fat and muscle loss as compared to matched controls not treated with this compound. A matched 1:2 case-control retrospective study was conducted with 22 patients with pancreatic cancer who were treated with curcumin on a previous protocol and 44 untreated controls with the same diagnosis matched by age, gender, time from advanced cancer, body mass index, and number of prior therapies. Data was collected regarding oncologic treatment, medication use, weights, heights, and survival. Body composition was determined by computerized tomography analyses at two timepoints separated by 60±20 days. For treated patients, the first image was at the beginning of treatment and for controls it was determined by the matching time from advanced cancer. The evolution of body composition over time was quantitatively analyzed comparing both groups. All patients lost weight both due to fat and muscle losses, and patients treated with curcumin presented greater losses both in lean adipose body mass. Use of medications, chemotherapy, age, time from advanced cancer, baseline albumin, performance status, and number of prior therapies were not independently correlated with changes in body composition variables. Patients treated with curcumin had borderline shorter survival when compared with untreated patients. Sarcopenic treated patients had significantly shorter survival than non-sarcopenic counterparts, and sarcopenia status was not associated with survival among the controls. Treated patients with shorter survival showed a tendency to lose more lean and especially fat body mass as compared to untreated patients, maybe suggesting an effect of curcumin on shifting weight loss towards the end of life by impacting its mechanisms.
Resumo:
The cause of testicular cancer is not known and recent hypotheses have suggested an altered hormonal milieu may increase the risk of testis cancer. This study examined modulation of testicular cancer risk by hormonal factors, specifically: environmental xenoestrogens (e.g. organochlorines), prenatal maternal estrogens, testosterone indices (age at puberty, severe adolescent acne, self-reported balding), sedentary lifestyle and dietary consumption of fats and phytoestrogens.^ A hospital based friend matched case-control study was conducted at the University of Texas M. D. Anderson Cancer Center in Houston, Texas, between January 1990 and October 1996. Cases had a first primary testis tumor diagnosed between age 18 to 50 years and resided in Texas, Louisiana, Oklahoma or Arkansas.^ Cases and friend controls completed a mail questionnaire and case/control mothers were contacted by phone regarding pregnancy related variables. The study population comprised 187 cases, 148 controls, 147 case mothers and 86 control mothers. Odds ratios were virtually identical whether the match was retained or dissolved, thus the analyses were conducted using unconditional logistic regression.^ Cryptorchidism was a strong risk factor for testis cancer with an age-adjusted odds ratio (OR) of 7.7 (95% confidence interval (CI): 2.3-26.3). In a final model (adjusted for age, education, and cryptorchidism), history of severe adolescent acne and self-reported balding were both significantly protective, as hypothesized. For acne (yes vs. no) the OR was 0.5 (CI: 0.3-1.0) and for balding (yes vs. no) the OR was 0.6 (CI: 0.3-1.0). Marijuana smoking was a risk factor among heavy, regular users (17 times/week, OR = 2.4; CI: 0.9-6.4) and higher saturated fat intake increased testis cancer risk (saturated fat intake $>$ 15.2 grams/day vs. $<$ 11.8 grams/day, OR = 3.3; CI: 1.5-7.1). Early puberty, xenoestrogen exposure, elevated maternal estrogen levels, sedentary lifestyle and dietary phytoestrogen intake were not associated with risk of testicular cancer.^ In conclusion, testicular cancer may be associated with endogenous androgen metabolism although environmental estrogen exposure can not be ruled out. Further research is needed to understand the underlying hormonal mechanisms and possible dietary influences. ^
Resumo:
The significance of nutritional factors in cancer research has been strongly emphasized. Such research is concerned not only with epidemiological effects relative to dietary factors on the causation of cancer, but with nutritional effects as an energy source on the prevention of cancer. Many studies speculate that the energy flow between tumor and host can be regulated by dietary intake. However, little knowledge on the comparison of the specific nutritional and energy requirements of different cells and tissues is available. Most popular and essential energy sources for the body are the carbohydrates. Among them, xylitol is known as efficient an energy source as glucose. In carbohydrate metabolism, glycolysis is one of the major energy producing pathways. However, recently the existence of an alternate catabolic pathway in mammals for carbohydrate besides glycolysis, i.e. bypass through triosephosphates to lactate via methylglyoxal has been suggested. This bypass was implicated to regulate glycolysis and also be responsible for the fluctuation in the levels of a regulator of cell growth. Methylglyoxal itself is known as a cancerostatic agent. The alterations of biochemical parameters in xylitol metabolism in animals indicated that xylitol may be metabolized through a methylglyoxal pathway.^ To elucidate the biological effect of xylitol as an energy source and the biological effect of its metabolites as a cancerostatis agent, the mode and extent of metabolism must be understood in tumor-bearing animals. Differential utilization of xylitol and glucose, if any, between tumor and host in such animals may exert tissue selective effects on both in terms of methylglyoxal formation and energy provision. The aim of this work was to assess the extent to which the differential utilization of xylitol might be used to generate different metabolic pathways in tumor and host, and to consider a role of nutrition in cancer.^ The results disclose that the existence of a pathway for biological methylglyoxal formation in normal rat liver has been confirmed in single cell suspension; the metabolic significance of the methylglyoxal pathway in the metabolism of glucose and xylitol has been evaluated quantitatively in normal rat liver and the differential metabolism of glucose and xylitol through overall catabolic pathways of carbohydrates has been studied in normal hepatic cells, AS-30D hepatoma and other several hepatoma lines. ^
Resumo:
The human GSTP1 gene has been shown, conclusively, to be polymorphic. The three main GSTP1 alleles, GSTP1*A, GSTP1*B, and GSTP1*C, encode proteins which differ in the 3-dimensional structure of their active sites and in their function in phase II metabolism of carcinogens, mutagens, and anticancer agents. Although, it is well established that GSTP1 is over expressed in many human tumors and that the levels of GSTP1 expression correlate directly with tumor resistance to chemotherapy and inversely with patient survival, the significance of the polymorphic GSTP1 gene locus on tumor response to chemotherapy remains unclear. The goal of this project was to define the role and significance of the polymorphic GSTP1 gene locus in GSTP1-based tumor drug resistance and as a determinant of patient response to chemotherapy. The hypothesis to be tested was that the polymorphic GSTP1 gene locus will confer to tumors a differential ability to metabolize cisplatin resulting in a GSTP1 genotype-based sensitivity to cisplatin. The study examined: (a) whether the different GSTP 1 alleles confer different levels of cellular protection against cisplatin-induced cytotoxicity, (b) whether the allelic GSTP1 proteins metabolize cisplatin with different efficiencies, and (c) whether the GSTP1 genotype is a determinant of tumor response to cisplatin therapy. The results demonstrate that the GSTP1 alleles differentially protect tumors against cisplatin-induced apoptosis and clonogenic cell kill in the rank order: GSTP1*C > GSTP1*B > GSTP1*A. The same rank order was observed for the kinetics of GSTP1-catalyzed cisplatin metabolism, both in cell-free and cellular systems, to the rate-limiting monoglutathionyl-platinum metabolite, which was characterized, for the first time, by mass spectral analysis. Finally, this study demonstrates that both GSTP1 genotype and the level of GSTP1 expression significantly contribute to tumor sensitivity to cisplatin treatment. Overall, the results of this project show that the polymorphic GSTP1 gene locus plays a significant role in tumor sensitivity to cisplatin treatment. Furthermore, these studies have contributed to the overall understanding of the significance of the polymorphic GSTP1 gene locus in tumor resistance to cancer chemotherapy and have provided the basis for further investigations into how this can be utilized to optimize and individualize cancer chemotherapy for cancer patients. ^
Resumo:
Lynch syndrome, is caused by inherited germ-line mutations in the DNA mismatch repair genes resulting in cancers at an early age, predominantly colorectal (CRC) and endometrial cancers. Though the median age at onset for CRC is about 45 years, disease penetrance varies suggesting that cancer susceptibility may be modified by environmental or other low-penetrance genes. Genetic variation due to polymorphisms in genes encoding metabolic enzymes can influence carcinogenesis by alterations in the expression and activity level of the enzymes. Variation in MTHFR, an important folate metabolizing enzyme can affect DNA methylation and DNA synthesis and variation in xenobiotic-metabolizing enzymes can affect the metabolism and clearance of carcinogens, thus modifying cancer risk. ^ This study examined a retrospective cohort of 257 individuals with Lynch syndrome, for polymorphisms in genes encoding xenobiotic-metabolizing enzymes-- CYP1A1 (I462V and MspI), EPHX1 (H139R and Y113H), GSTP1 (I105V and A114V), GSTM1 and GSTT1 (deletions) and folate metabolizing enzyme--MTHFR (C677T and A1298C). In addition, a series of 786 cases of sporadic CRC were genotyped for CYP1A1 I462V and EPHX1 Y113H to assess gene-gene interaction and gene-environment interaction with smoking in a case-only analysis. ^ Prominent findings of this study were that the presence of an MTHFR C677T variant allele was associated with a 4 year later age at onset for CRC on average and a reduced age-associated risk for developing CRC (Hazard ratio: 0.55; 95% confidence interval: 0.36–0.85) compared to the absence of any variant allele in individuals with Lynch syndrome. Similarly, Lynch syndrome individuals heterozygous for CYP1A1 I462V A>G polymorphism developed CRC an average of 4 years earlier and were at a 78% increased age-associated risk (Hazard ratio for AG relative to AA: 1.78; 95% confidence interval: 1.16-2.74) than those with the homozygous wild-type genotype. Therefore these two polymorphisms may be additional susceptibility factors for CRC in Lynch syndrome. In the case-only analysis, evidence of gene-gene interaction was seen between CYP1A1 I462V and EPHX1 Y113H and between EPHX1 Y113H and smoking suggesting that genetic and environmental factors may interact to increase sporadic CRC risk. Implications of these findings are the ability to identify subsets of high-risk individuals for targeted prevention and intervention. ^
Resumo:
Increased glycolysis and oxidative stress are common features of cancer cells. These metabolic alterations are associated with mitochondrial dysfunction and can be caused by mitochondrial DNA (mtDNA) mutations, oncogenic signals, loss of tumor suppressor, and tumor tissue hypoxia. It is well established that mitochondria play central roles in energy metabolism, maintenance of redox balance, and regulation of apoptosis. However, the biochemical and molecular mechanisms that maintain high glycolysis in cancer cells (the Warburg effect) with mitochondrial dysfunction and oxidative stress remain to be determined. The major goals of this study were to establish a unique experimental system in which the mitochondrial respiratory function can be regulated as desired, and to use this system to investigate the mechanistic link between mitochondrial dysfunction and the Warburg effect along with oxidative stress in cancer cells. To achieve these goals, I have established a tetracycline-inducible system in which a dominant negative form of mitochondrial DNA polymerase y (POLGdn) expression could be regulated by tetracycline; thus controlling mitochondrial respiratory function. Using this cell system, I demonstrated that POLGdn expression resulted in mitochondrial dysfunction through decreasing mtDNA content, depletion of mtDNA encoded mRNA and protein expression. This process was mediated by TFAM proteasome degradation. Mitochondrial dysfunction mediated by POLGdn expression led to a significant increase in cellular glycolysis and oxidative stress. Surprisingly, mitochondrial dysfunction also resulted in increased NAD(P)H oxidase (NOX) enzyme activity, which was shown to be essential for maintaining high glycolysis. Chemical Inhibition of NOX activity by diphenyliodonium (DPI) preferentially impacted the survival of mitochondrial defective cells. The colon cancer HCT116-/- cells that have lost transcriptional regulation of the mitochondrial assembling enzyme SCO2, leading to compromised mitochondrial respiratory function, were found to have increased NOX activity and were highly sensitive to DPI treatment. Ovarian epithelial cells with Ras transformation also exhibited an increase in NOX gene expression and NOX enzyme activity, rendering the cells sensitive to DPI inhibition especially under hypoxic condition. These data together suggest that NOX plays a novel role in maintaining high glycolysis in cancer cells with mitochondrial defects, and that NOX may be a potential target for cancer therapy. ^
Resumo:
Increasing attention has been given to the connection between metabolism and cancer. Under aerobic conditions, normal cells predominantly use oxidative phosphorylation for ATP generation. In contrast, increase of glycolytic activity has been observed in various tumor cells, which is known as Warburg effect. Cancer cells, compared to normal cells, produce high levels of Reactive Oxygen Species (ROS) and hence are constantly under oxidative stress. Increase of oxidative stress and glycolytic activity in cancer cells represent major biochemical alterations associated with malignant transformation. Despite prevalent upregulation of ROS production and glycolytic activity observed in various cancer cells, underlying mechanisms still remain to be defined. Oncogenic signals including Ras has been linked to regulation of energy metabolism and ROS production. Current study was initiated to investigate the mechanism by which Ras oncogenic signal regulates cellular metabolism and redox status. A doxycycline inducible gene expression system with oncogenic K-ras transfection was constructed to assess the role played by Ras activation in any given studied parameters. Data obtained here reveals that K-ras activation directly caused mitochondrial dysfunction and ROS generation, which appeared to be mechanistically associated with translocation of K-ras to mitochondria and the opening of the mitochondrial permeability transition pore. K-ras induced mitochondrial dysfunction led to upregulation of glycolysis and constitutive activation of ROS-generating NAD(P)H Oxidase (NOX). Increased oxidative stress, upregulation of glycolytic activity, and constitutive activated NOX were also observed in the pancreatic K-ras transformed cancer cells compared to their normal counterparts. Compared to non-transformed cells, the pancreatic K-ras transformed cancer cells with activated NOX exhibited higher sensitivity to capsaicin, a natural compound that appeared to target NOX and cause preferential accumulation of oxidative stress in K-ras transformed cells. Taken together, these findings shed new light on the role played by Ras in the road to cancer in the context of oxidative stress and metabolic alteration. The mechanistic relationship between K-ras oncogenic signals and metabolic alteration in cancer will help to identify potential molecular targets such as NAD(P)H Oxidase and glycolytic pathway for therapeutic intervention of cancer development. ^
Resumo:
Background. Cancer cachexia is a common syndrome complex in cancer, occurring in nearly 80% of patients with advanced cancer and responsible for at least 20% of all cancer deaths. Cachexia is due to increased resting energy expenditure, increased production of inflammatory mediators, and changes in lipid and protein metabolism. Non-steroidal anti-inflammatory drugs (NSAIDs), by virtue of their anti-inflammatory properties, are possibly protective against cancer-related cachexia. Since cachexia is also associated with increased hospitalizations, this outcome may also show improvement with NSAID exposure. ^ Design. In this retrospective study, computerized records from 700 non-small cell lung cancer patients (NSCLC) were reviewed, and 487 (69.57%) were included in the final analyses. Exclusion criteria were severe chronic obstructive pulmonary disease, significant peripheral edema, class III or IV congestive heart failure, liver failure, other reasons for weight loss, or use of research or anabolic medications. Information on medication history, body weight and hospitalizations was collected from one year pre-diagnosis until three years post-diagnosis. Exposure to NSAIDs was defined if a patient had a history of being treated with NSAIDs for at least 50% of any given year in the observation period. We used t-test and chi-square tests for statistical analyses. ^ Results. Neither the proportion of patients with cachexia (p=0.27) nor the number of hospitalizations (p=0.74) differed among those with a history of NSAID use (n=92) and those without (n=395). ^ Conclusions. In this study, NSAID exposure was not significantly associated with weight loss or hospital admissions in patients with NSCLC. Further studies may be needed to confirm these observations.^
Resumo:
Triple-negative breast cancers (TNBC) are characterized by the lack of or reduced expression of the estrogen and progesterone receptors, and normal expression of the human epidermal growth factor receptor 2. The lack of a well-characterized target for treatment leaves only systemic chemotherapy as the mainstay of treatment. Approximately 60-70% of patients are chemosensitive, while the remaining majority does not respond. Targeted therapies that take advantage of the unique molecular perturbations found in triple-negative breast cancer are needed. The genes that are frequently amplified or overexpressed represent potential therapeutic targets for triple-negative breast cancer. The purpose of this study was to identify and validate novel therapeutic targets for triple-negative breast cancers. 681 genes showed consistent and highly significant overexpression in TNBC compared to receptor-positive cancers in 2 data sets. For two genes, 3 of the 4 siRNAs showed preferential growth inhibition in TNBC cells. These two genes were the low density lipoprotein receptor-related protein 8 (LRP8) and very low-density lipoprotein receptor (VLDLR). Exposure to their cognate ligands, reelin and apolipoprotein E isoform 4 (ApoE4), stimulated the growth of TNBC cells in vitro. Suppression of the expression of either LRP8 or VLDLR or exposure to RAP (an inhibitor of ligand binding to LRP8 and VLDLR) abolished this ligand-induced proliferation. High-throughput protein and metabolic arrays revealed that ApoE4 stimulation rescued TNBC cells from serum-starvation induced up-regulation of genes involved in lipid biosynthesis, increased protein expression of oncogenes involved in the MAPK/ERK and DNA repair pathways, and reduced the serum-starvation induction of biochemicals involved in oxidative stress response and glycolytic metabolism. shLRP8 MDA-MB-231 xenografts had reduced tumor volume, in comparison to parental and shCON xenografts. These results indicate that LRP8-APOE signaling confers survival advantages to TNBC tumors under reduced nutrient conditions and during cellular environmental stress. We revealed that the LRP8-APOE receptor-ligand system is overexpressed in human TNBC. We also demonstrated that this receptor system mediates a strong growth promoting and survival function in TNBC cells in vitro and helps to sustain the growth of MDA-MD-231 xenografts. We propose that inhibitors of LRP8-APOE signaling may be clinically useful therapeutic agents for triple-negative breast cancer.
Resumo:
A major goal of chemotherapy is to selectively kill cancer cells while minimizing toxicity to normal cells. Identifying biological differences between cancer and normal cells is essential in designing new strategies to improve therapeutic selectivity. Superoxide dismutases (SOD) are crucial antioxidant enzymes required for the elimination of superoxide (O2·− ), a free radical produced during normal cellular metabolism. Previous studies in our laboratory demonstrated that 2-methoxyestradiol (2-ME), an estradiol derivative, inhibits the function of SOD and selectively kills human leukemia cells without exhibiting significant cytotoxicity in normal lymphocytes. The present work was initiated to examine the biochemical basis for the selective anticancer activity of 2-ME. Investigations using two-parameter flow cytometric analyses and ROS scavengers established that O2·− is a primary and essential mediator of 2-ME-induced apoptosis in cancer cells. In addition, experiments using SOD overexpression vectors and SOD knockout cells found that SOD is a critical target of 2-ME. Importantly, the administration of 2-ME resulted in the selective accumulation of O 2·− and apoptosis in leukemia and ovarian cancer cells. The preferential activity of 2-ME was found to be due to increased intrinsic oxidative stress in these cancer cells versus their normal counterparts. This intrinsic oxidative stress was associated with the upregulation of the antioxidant enzymes SOD and catalase as a mechanism to cope with the increase in ROS. Furthermore, oxygen consumption experiments revealed that normal lymphocytes decrease their respiration rate in response to 2-ME-induced oxidative stress, while human leukemia cells seem to lack this regulatory mechanism. This leads to an uncontrolled production of O2·−, severe accumulation of ROS, and ultimately ROS-mediated apoptosis in leukemia cells treated with 2-ME. The biochemical differences between cancer and normal cells identified here provide a basis for the development of drug combination strategies using 2-ME with other ROS-generating agents to enhance anticancer activity. The effectiveness of such a combination strategy in killing cancer cells was demonstrated by the use of 2-ME with agents/modalities such as ionizing radiation and doxorubicin. Collectively, the data presented here strongly suggests that 2-ME may have important clinical implications for the selective killing of cancer cells. ^