13 resultados para Cancer biomarkers

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several immune pathologies are the result of aberrant regulation of T lymphocytes. Pronounced T cell proliferation can result in autoimmunity or hematologic malignancy, whereas loss of T cell activity can manifest as immunodeficiency. Thus, there is a critical need to characterize the signal transduction pathways that mediate T cell activation so that novel and rational strategies to detect and effectively control T cell mediated disease can be achieved. ^ The first objective of this dissertation was to identify and characterize novel T cell regulatory proteins that are differentially expressed upon antigen induced activation. Using a functional proteomics approach, two members of the prohibitin (Phb) family of proteins, Phb1 and Phb2, were determined to be upregulated upon activation of primary human T cells. Furthermore, their regulated expression was dependent upon CD3 and CD28 signaling pathways which synergistically increased their expression. In contrast to previous reports of Phb nuclear localization, both proteins were determined to localize to the mitochondrial inner membrane of human T cells. Additionally, novel Phb phosphorylation sites were identified and characterized using mass spectrometry, phosphospecific antibodies and site directed mutagenesis. ^ Prohibitins have been proposed to play important roles in cancer development however the mechanism of action has not been elucidated. The second objective of this dissertation was to define the functional role of Phbs in T cell activity, survival and disease. Compared to levels in normal human T cells, Phb expression was higher in the human tumor T cell line Kit225 and subcellularly localized to the mitochondrion. Ablation of Phb expression by siRNA treatment of Kit225 cells resulted in disruption of mitochondrial membrane potential and significantly enhanced their sensitivity to cell death, suggesting they serve a protective function in T cells. Furthermore, Q-RT-PCR analysis of human oncology cDNA expression libraries indicated the Phbs may represent hematological cancer biomarkers. Indeed, Phb1 and Phb2 protein levels were 6-10 fold higher in peripheral blood mononuclear cells isolated from malignant lymphoma and multiple myeloma patients compared to healthy individuals. ^ Taken together, Phb1 and Phb2 are novel phosphoproteins upregulated during T cell activation and transformation to function in the maintenance of mitochondrial integrity and perhaps energy metabolism, thus representing previously unrecognized intracellular biomarkers and therapeutic targets for regulating T cell activation and hematologic malignancies. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer is the second leading cause of cancer-related death and the most common non-skin cancer in men in the USA. Considerable advancements in the practice of medicine have allowed a significant improvement in the diagnosis and treatment of this disease and, in recent years, both incidence and mortality rates have been slightly declining. However, it is still estimated that 1 man in 6 will be diagnosed with prostate cancer during his lifetime, and 1 man in 35 will die of the disease. In order to identify novel strategies and effective therapeutic approaches in the fight against prostate cancer, it is imperative to improve our understanding of its complex biology since many aspects of prostate cancer initiation and progression still remain elusive. The study of tumor biomarkers, due to their specific altered expression in tumor versus normal tissue, is a valid tool for elucidating key aspects of cancer biology, and may provide important insights into the molecular mechanisms underlining the tumorigenesis process of prostate cancer. PCA3, is considered the most specific prostate cancer biomarker, however its biological role, until now, remained unknown. PCA3 is a long non-coding RNA (ncRNA) expressed from chromosome 9q21 and its study led us to the discovery of a novel human gene, PC-TSGC, transcribed from the opposite strand and in an antisense orientation to PCA3. With the work presented in this thesis, we demonstrate that PCA3 exerts a negative regulatory role over PC-TSGC, and we propose PC-TSGC to be a new tumor suppressor gene that contrasts the transformation of prostate cells by inhibiting Rho-GTPases signaling pathways. Our findings provide a biological role for PCA3 in prostate cancer and suggest a new mechanism of tumor suppressor gene inactivation mediated by non-coding RNA. Also, the characterization of PCA3 and PC-TSGC led us to propose a new molecular pathway involving both genes in the transformation process of the prostate, thus providing a new piece of the jigsaw puzzle representing the complex biology of prostate cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the United States, endometrial cancer is the leading cancer of the female reproductive tract. There are 40,100 new cases and 7,470 deaths from endometrial cancer estimated for 2008 (47). The average five year survival rate for endometrial cancer is 84% however, this figure is substantially lower in patients diagnosed with late stage, advanced disease and much higher for patients diagnosed in early stage disease (47). Endometrial cancer (EC) has been associated with several risk factors including obesity, diabetes, hypertension, previously documented occurrence of hereditary non-polyposis colorectal cancer (HNPCC), and heightened exposure to estrogen (25). As of yet, there has not been a dependable molecular predictor of endometrial cancer occurrence in women with these predisposing factors. The goal of our lab is to identify genes that are aberrantly expressed in EC and may serve as molecular biomarkers of EC progression. One candidate protein that we are exploring as a biomarker of EC progression is the cell survival protein survivin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer mortality in American men. The distinction between those cases of prostate cancer destined to progress rapidly to lethal metastatic disease and those with little likelihood of causing morbidity and mortality is a major goal of current research. Some type of diagnostic method is urgently needed to identify which histological prostate cancers have completed the progression to a stage that will produce a life-threatening disease, thus requiring immediate therapeutic intervention. The objectives of this dissertation are to delineate a novel genetic region harboring tumor suppressor gene(s) and to identify a marker for prostate tumorigenesis. I first established an in vitro cell model system from a human prostate epithelial cells derived from tissue fragments surrounding a prostate tumor in a patient with prostatic adenocarcinoma. Since chromosome 5 abnormality was present in early, middle and late passages of this cell model system, I examined long-term established prostate cancer cell lines for this chromosome abnormality. The results implicated the region surrounding marker D5S2068 as the locus of interest for further experimentation and location of a tumor suppressor gene in human prostate cancer. ^ Cancer is a group of complex genetic diseases with uncontrolled cell; division and prostate cancer is no exception. I determined if telomeric DNA, and telomerase activity, alone or together, could serve as biomarkers of prostate tumorigenesis. I studied three newly established human prostate cancer cell lines and three fibroblast cell cultures derived from prostate tissues. In conclusion, my data reveal that in the presence of telomerase activity, telomeric repeats are maintained at a certain optimal length, and analysis of telomeric DNA variations might serve as early diagnostic and prognostic biomarkers for prostate cancer. (Abstract shortened by UMI.)^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amplification of human chromosome 20q DNA is the most frequently occurring chromosomal abnormality detected in sporadic colorectal carcinomas and shows significant correlation with liver metastases. Through comprehensive high-resolution microarray comparative genomic hybridization and microarray gene expression profiling, we have characterized chromosome 20q amplicon genes associated with human colorectal cancer metastasis in two in vitro metastasis model systems. The results revealed increasing complexity of the 20q genomic profile from the primary tumor-derived cell lines to the lymph node and liver metastasis derived cell lines. Expression analysis of chromosome 20q revealed a subset of over expressed genes residing within the regions of genomic copy number gain in all the tumor cell lines, suggesting these are Chromosome 20q copy number responsive genes. Bases on their preferential expression levels in the model system cell lines and known biological function, four of the over expressed genes mapping to the common intervals of genomic copy gain were considered the most promising candidate colorectal metastasis-associated genes. Validation of genomic copy number and expression array data was carried out on these genes, with one gene, DNMT3B, standing out as expressed at a relatively higher levels in the metastasis-derived cell lines compared with their primary-derived counterparts in both the models systems analyzed. The data provide evidence for the role of chromosome 20q genes with low copy gain and elevated expression in the clonal evolution of metastatic cells and suggests that such genes may serve as early biomarkers of metastatic potential. The data also support the utility of the combined microarray comparative genomic hybridization and expression array analysis for identifying copy number responsive genes in areas of low DNA copy gain in cancer cells. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colorectal cancer is the forth most common diagnosed cancer in the United States. Every year about a hundred forty-seven thousand people will be diagnosed with colorectal cancer and fifty-six thousand people lose their lives due to this disease. Most of the hereditary nonpolyposis colorectal cancer (HNPCC) and 12% of the sporadic colorectal cancer show microsatellite instability. Colorectal cancer is a multistep progressive disease. It starts from a mutation in a normal colorectal cell and grows into a clone of cells that further accumulates mutations and finally develops into a malignant tumor. In terms of molecular evolution, the process of colorectal tumor progression represents the acquisition of sequential mutations. ^ Clinical studies use biomarkers such as microsatellite or single nucleotide polymorphisms (SNPs) to study mutation frequencies in colorectal cancer. Microsatellite data obtained from single genome equivalent PCR or small pool PCR can be used to infer tumor progression. Since tumor progression is similar to population evolution, we used an approach known as coalescent, which is well established in population genetics, to analyze this type of data. Coalescent theory has been known to infer the sample's evolutionary path through the analysis of microsatellite data. ^ The simulation results indicate that the constant population size pattern and the rapid tumor growth pattern have different genetic polymorphic patterns. The simulation results were compared with experimental data collected from HNPCC patients. The preliminary result shows the mutation rate in 6 HNPCC patients range from 0.001 to 0.01. The patients' polymorphic patterns are similar to the constant population size pattern which implies the tumor progression is through multilineage persistence instead of clonal sequential evolution. The results should be further verified using a larger dataset. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bladder cancer is the fourth most common cancer in men in the United States. There is compelling evidence supporting that genetic variations contribute to the risk and outcomes of bladder cancer. The PI3K-AKT-mTOR pathway is a major cellular pathway involved in proliferation, invasion, inflammation, tumorigenesis, and drug response. Somatic aberrations of PI3K-AKT-mTOR pathway are frequent events in several cancers including bladder cancer; however, no studies have investigated the role of germline genetic variations in this pathway in bladder cancer. In this project, we used a large case control study to evaluate the associations of a comprehensive catalogue of SNPs in this pathway with bladder cancer risk and outcomes. Three SNPs in RAPTOR were significantly associated with susceptibility: rs11653499 (OR: 1.79, 95%CI: 1.24–2.60), rs7211818 (OR: 2.13, 95%CI: 1.35–3.36), and rs7212142 (OR: 1.57, 95%CI: 1.19–2.07). Two haplotypes constructed from these 3 SNPs were also associated with bladder cancer risk. In combined analysis, a significant trend was observed for increased risk with an increase in the number of unfavorable genotypes (P for trend<0.001). Classification and regression tree analysis identified potential gene-environment interactions between RPS6KA5 rs11653499 and smoking. In superficial bladder cancer, we found that PTEN rs1234219 and rs11202600, TSC1 rs7040593, RAPTOR rs901065, and PIK3R1 rs251404 were significantly associated with recurrence in patients receiving BCG. In muscle invasive and metastatic bladder cancer, AKT2 rs3730050, PIK3R1 rs10515074, and RAPTOR rs9906827 were associated with survival. Survival tree analysis revealed potential gene-gene interactions: patients carrying the unfavorable genotypes of PTEN rs1234219 and TSC1 rs704059 exhibited a 5.24-fold (95% CI: 2.44–11.24) increased risk of recurrence. In combined analysis, with the increasing number of unfavorable genotypes, there was a significant trend of higher risk of recurrence and death (P for trend<0.001) in Cox proportional hazard regression analysis, and shorter event (recurrence and death) free survival in Kaplan-Meier estimates (P log rank<0.001). This study strongly suggests that genetic variations in PI3K-AKT-mTOR pathway play an important role in bladder cancer development. The identified SNPs, if validated in further studies, may become valuable biomarkers in assessing an individual's cancer risk, predicting prognosis and treatment response, and facilitating physicians to make individualized treatment decisions. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The difficulty of detecting differential gene expression in microarray data has existed for many years. Several correction procedures try to avoid the family-wise error rate in multiple comparison process, including the Bonferroni and Sidak single-step p-value adjustments, Holm's step-down correction method, and Benjamini and Hochberg's false discovery rate (FDR) correction procedure. Each multiple comparison technique has its advantages and weaknesses. We studied each multiple comparison method through numerical studies (simulations) and applied the methods to the real exploratory DNA microarray data, which detect of molecular signatures in papillary thyroid cancer (PTC) patients. According to our results of simulation studies, Benjamini and Hochberg step-up FDR controlling procedure is the best process among these multiple comparison methods and we discovered 1277 potential biomarkers among 54675 probe sets after applying the Benjamini and Hochberg's method to PTC microarray data.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Breast cancer is a highly variable disease, and long-term outcomes for individual patients are difficult to predict. We evaluated a retrospective cohort of early stage breast cancer (ESBC) patients based on a variety of clinical and epidemiological factors, specifically looking at the distribution of metastasis and associations with these clinical and epidemiological factors. ^ Methods. Patients were derived from the Early Stage Breast Cancer Repository (ESBCR) with a breast cancer diagnosed between 1985 and 2000. We conducted univariate and multivariate analysis of the data to evaluate associations between characteristics and occurrence of overall, visceral, and bone metastasis. Visceral metastasis was defined as lung, liver, peritoneal, lymph node (thoracic, abdominal, pelvis), and contralateral breast cancer. ^ Results. Overall, 394 (16%) patients developed a metastasis. Of these, 83% were visceral and 17% were bone. Multivariate analyses identified the following variables to be associated with metastasis: Any metastasis: age at diagnosis, stage, ER/PR status, hormone treatment, and type of surgery (1)Visceral metastasis: age at diagnosis, stage, hormone treatment, and type of surgery (2) Bone metastasis –Alcohol use, stage, and ER/PR status ^ Discussion/conclusion. ER-/PR- status has previously been found to be associated with bone metastasis, as we confirm in our cohort. We report an association between alcohol use and bone metastasis whereas previous studies find an association with recurrence. Distribution of metastases varies from previous studies. Typically, previous studies reported bone metastasis >30%, yet our study found 17%. Previous studies varied in design, and definition of visceral metastasis. Future research is needed to further elucidate prognostic factors associated with specific metastases A more thorough understanding of what might predict which ESBC patients will develop metastases can help direct future treatment. Future studies of this nature could include the Perou intrinsic subtypes, biomarkers like Ki-67, and genetic analyses such as Oncotype DX or MammaPrint.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in therapy for colorectal cancer have been hampered by development of resistance to chemotherapy. The Src family of protein tyrosine kinases has been associated with colorectal cancer development and progression. Activation of the prototypic member of the family, Src, occurs in advanced colorectal cancer and is associated with a worse outcome. This work tests the hypotheses that Src activation contributes to chemoresistance in some colon tumors and that this resistance can be overcome by use of Src inhibitors. The aims of the proposal were to (1) determine if constitutive Src activation is sufficient to induce oxaliplatin resistance; (2) evaluate the role of reactive oxygen species (ROS) in the activation of Src after oxaliplatin treatment; (3) determine the frequency of Src activation in liver metastases after oxaliplatin treatment; and (4) evaluate the safety, preliminary efficacy, and pharmacodynamics of the combination of dasatinib with oxaliplatin-based therapy in patients with metastatic colorectal cancer. ^ Using a panel of colon cancer cell lines and murine models, I demonstrate that administration of oxaliplatin, a commonly utilized chemotherapy for colorectal cancer, results in an increased activation of Src. The activation occurs acutely in some, but not all, colorectal carcinoma cell lines. Cell lines selected for oxaliplatin resistance are further increased in Src activity. Treatment of cell lines with dasatinib, a non-selective pharmacologic inhibitor of the Src family kinases synergistically killed some, but not all cell lines. Cell lines with the highest acute activation of Src after oxaliplatin administration were the most sensitive to the combination therapy. Previous work demonstrated that siRNA to Src increased sensitivity to oxaliplatin, suggesting that the effects of dasatinib are primarily due to its ability to inhibit Src in these cell lines. ^ To examine the mechanism underlying these results, I examined the effects of reactive oxygen species (ROS), as previous studies have demonstrated that platinum chemotherapeutics result in intracellular oxidative stress. I demonstrated that oxaliplatin-induced reactive oxygen species were higher in the cell lines with Src activation, relative to those in which Src was not activated. This oxaliplatin-induced Src activation was blocked by the administration of anti-oxidants, thereby demonstrating that synergistic killing between dasatinib and oxaliplatin was associated with the ability of the latter to generate ROS. ^ In a murine model of colorectal cancer metastasis to the liver, the combination of dasatinib and oxaliplatin was more effective in reducing tumor volume than either agent alone. However, when oxaliplatin resistant cell lines were treated with a combination of oxaliplatin and AZD0530, an inhibitor in the clinic with increased specificity for Src, no additional benefit was seen, although Src was activated by oxaliplatin and Src substrates were inhibited. The indolent growth of oxaliplatin-resistant cells, unlike the growth of oxaliplatin resistant tumors in patients, precludes definitive interpretation of these results. ^ To further explore Src activation in patients with oxaliplatin exposure and resistance, an immunohistochemistry analysis of tumor tissue from resected liver metastases of colorectal cancer was performed. Utilizing a tissue microarray, staining for phosphorylated Src and FAK demonstrated strong staining of tumor relative to stromal and normal liver. In patients recently exposed to oxaliplatin, there was increased FAK activation, supporting the clinical relevance of the prior preclinical studies. ^ To pursue the potential clinical benefit of the combination of Src inhibition with oxaliplatin, a phase IB clinical trial was completed. Thirty patients with refractory metastatic colorectal cancer were treated with a combination of 5-FU, oxaliplatin, an epidermal-growth factor receptor monoclonal antibody, and dasatinib. The recommended phase II dose of dasatinib was established, and toxicities were quantified. Pharmacodynamic studies demonstrated increased phosphorylation of the Src substrate paxillin after dasatinib therapy. Tumor biopsies were obtained and Src expression levels were quantitated. Clinical benefit was seen with the combination, including a response rate of 20% and disease control rate of 56%, prompting a larger clinical study. ^ In summary, although Src is constitutively activated in metastatic colorectal cancer, administration of oxaliplatin chemotherapy can further increase its activity, through a reactive oxygen species dependent manner. Inhibition of Src in combination with oxaliplatin provides additional benefit in vitro, in preclinical animal models, and in the clinic. Further study of Src inhibition in the clinic and identification of predictive biomarkers of response will be required to further advance this promising therapeutic target. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ovarian cancer is the leading cause of cancer-related death for females due to lack of specific early detection method. It is of great interest to find molecular-based biomarkers which are sensitive and specific to ovarian cancer for early diagnosis, prognosis and therapeutics. miRNAs have been proposed to be potential biomarkers that could be used in cancer prevention and therapeutics. The current study analyzed the miRNA and mRNA expression data extracted from the Cancer Genome Atlas (TCGA) database. Using simple linear regression and multiple regression models, we found 71 miRNA-mRNA pairs which were negatively associated between 56 miRNAs and 24 genes of PI3K/AKT pathway. Among these miRNA and mRNA target pairs, 9 of them were in agreement with the predictions from the most commonly used target prediction programs including miRGen, miRDB, miRTarbase and miR2Disease. These shared miRNA-mRNA pairs were considered to be the most potential genes that were involved in ovarian cancer. Furthermore, 4 of the 9 target genes encode cell cycle or apoptosis related proteins including Cyclin D1, p21, FOXO1 and Bcl2, suggesting that their regulator miRNAs including miR-16, miR-96 and miR-21 most likely played important roles in promoting tumor growth through dysregulated cell cycle or apoptosis. miR-96 was also found to directly target IRS-1. In addition, the results showed that miR-17 and miR-9 may be involved in ovarian cancer through targeting JAK1. This study might provide evidence for using miRNA or miRNA profile as biomarker.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD8+ cytotoxic T lymphocytes (CTL) frequently infiltrate tumors, yet most melanoma patients fail to undergo tumor regression. We studied the differentiation of the CD8+ tumor-infiltrating lymphocytes (TIL) from 44 metastatic melanoma patients using known T-cell differentiation markers. We also compared CD8+ TIL against the T cells from matched melanoma patients’ peripheral blood. We discovered a novel subset of CD8+ TIL co-expressing early-differentiation markers, CD27, CD28, and a late/senescent CTL differentiation marker, CD57. This CD8+CD57+ TIL expressed a cytolytic enzyme, granzyme B (GB), yet did not express another cytolytic pore-forming molecule, perforin (Perf). In contrast, the CD8+CD57+ T cells in the periphery were CD27-CD28-, and GBHi and PerfHi. We found this TIL subset was not senescent and could be induced to proliferate and differentiate into CD27-CD57+, perforinHi, mature CTL. This further differentiation was arrested by TGF-β1, an immunosuppressive cytokine known to be produced by many different kinds of tumors. Therefore, we have identified a novel subset of incompletely differentiated CD8+ TIL that resembled those found in patients with uncontrolled chronic viral infections. In a related study, we explored prognostic biomarkers in metastatic melanoma patients treated in a Phase II Adoptive Cell Therapy (ACT) trial, in which autologous TIL were expanded ex vivo with IL-2 and infused into lymphodepleted patients. We unexpectedly found a significant positive clinical association with the infused CD8+ TIL expressing B- and T- lymphocyte attentuator (BTLA), an inhibitory T-cell receptor. We found that CD8+BTLA+ TIL had a superior proliferative response to IL-2, and were more capable of autocrine IL-2 production in response to TCR stimulation compared to the CD8+BTLA- TIL. The CD8+BTLA+ TIL were less differentiated and resembled the incompletely differentiated CD8+ TIL described above. In contrast, CD8+BTLA- TIL were poorly proliferative, expressed CD45RA and killer-cell immunoglobulin-like receptors (KIRs), and exhibited a gene expression signature of T cell deletion. Surprisingly, ligation of BTLA by its cognate receptor, HVEM, enhanced the survival of CD8+BTLA+ TIL by activating Akt/PKB. Our studies provide a comprehensive characterization of CD8+ TIL differentiation in melanoma, and revealed BTLA as a novel T-cell differentiation marker along with its role in promoting T cell survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colorectal cancer is a leading cause of cancer mortality and early detection can significantly improve the clinical outcome. Most colorectal cancers arise from benign neoplastic lesions recognized as adenomas. Only a small percentage of all adenomas will become malignant. Thus, there is a need to identify specific markers of malignant potential. Studies at the molecular level have demonstrated an accumulation of genetic alterations, some hereditary but for the most occurring in somatic cells. The most common are the activation of ras, an oncogene involved in signal transduction, and the inactivation of p53, a tumor suppressor gene implicated in cell cycle regulation. In this study, 38 carcinomas, 95 adenomas and 20 benign polyps were analyzed by immunohistochemistry for the abnormal expression of p53 and ras proteins. An index of cellular proliferation was also measured by labeling with PCNA. A general overexpression of p53 was immunodetected in 66% of the carcinomas, while 26% of adenomas displayed scattered individual positive cells or a focal high concentration of positive cells. This later was more associated with severe dysplasia. Ras protein was detected in 37% of carcinomas and 32% of adenomas mostly throughout the tissue. p53 immunodetection was more frequent in adenomas originating in colons with synchronous carcinomas, particularly in patients with familial adenomatous polyposis and it may be a useful marker in these cases. Difference in the frequency of p53 and ras alterationbs was related to the location of the neoplasm. Immunodetection of p53 protein was correlated to the presence of a mutation in p53 gene at exon 7 and 5 in 4/6 carcinomas studied and 2 villous adenomas. Thus, we characterized in adenomas the abnormal expression of two proteins encoded by the most commonly altered genes in colorectal cancer. p53 alteration appears to be more specifically associated with transition to malignancy than ras. By using immunohistochemistry, a technique that keeps the architecture of the tissue intact, it was possible to correlate these alterations to histopathological characteristics that were associated with higher risks for transformation: villous content, dysplasia and size of adenoma. ^