6 resultados para Cancer biomarker
em DigitalCommons@The Texas Medical Center
Resumo:
Prostate cancer is the second leading cause of cancer-related death and the most common non-skin cancer in men in the USA. Considerable advancements in the practice of medicine have allowed a significant improvement in the diagnosis and treatment of this disease and, in recent years, both incidence and mortality rates have been slightly declining. However, it is still estimated that 1 man in 6 will be diagnosed with prostate cancer during his lifetime, and 1 man in 35 will die of the disease. In order to identify novel strategies and effective therapeutic approaches in the fight against prostate cancer, it is imperative to improve our understanding of its complex biology since many aspects of prostate cancer initiation and progression still remain elusive. The study of tumor biomarkers, due to their specific altered expression in tumor versus normal tissue, is a valid tool for elucidating key aspects of cancer biology, and may provide important insights into the molecular mechanisms underlining the tumorigenesis process of prostate cancer. PCA3, is considered the most specific prostate cancer biomarker, however its biological role, until now, remained unknown. PCA3 is a long non-coding RNA (ncRNA) expressed from chromosome 9q21 and its study led us to the discovery of a novel human gene, PC-TSGC, transcribed from the opposite strand and in an antisense orientation to PCA3. With the work presented in this thesis, we demonstrate that PCA3 exerts a negative regulatory role over PC-TSGC, and we propose PC-TSGC to be a new tumor suppressor gene that contrasts the transformation of prostate cells by inhibiting Rho-GTPases signaling pathways. Our findings provide a biological role for PCA3 in prostate cancer and suggest a new mechanism of tumor suppressor gene inactivation mediated by non-coding RNA. Also, the characterization of PCA3 and PC-TSGC led us to propose a new molecular pathway involving both genes in the transformation process of the prostate, thus providing a new piece of the jigsaw puzzle representing the complex biology of prostate cancer.
Resumo:
In the United States, endometrial cancer is the leading cancer of the female reproductive tract. There are 40,100 new cases and 7,470 deaths from endometrial cancer estimated for 2008 (47). The average five year survival rate for endometrial cancer is 84% however, this figure is substantially lower in patients diagnosed with late stage, advanced disease and much higher for patients diagnosed in early stage disease (47). Endometrial cancer (EC) has been associated with several risk factors including obesity, diabetes, hypertension, previously documented occurrence of hereditary non-polyposis colorectal cancer (HNPCC), and heightened exposure to estrogen (25). As of yet, there has not been a dependable molecular predictor of endometrial cancer occurrence in women with these predisposing factors. The goal of our lab is to identify genes that are aberrantly expressed in EC and may serve as molecular biomarkers of EC progression. One candidate protein that we are exploring as a biomarker of EC progression is the cell survival protein survivin.
Resumo:
In chronic lymphocytic leukemia (CLL), one of the best predictors of outcome is the somatic mutation status of the immunoglobulin heavy chain variable region (IGHV) genes. Patients whose CLL cells have unmutated IGHV genes have a median survival of 8 years; those with mutated IGHV genes have a median survival of 25 years. To identify new prognostic biomarkers and molecular targets for therapy in untreated CLL patients, we reanalyzed the raw data from four published gene expression profiling microarray studies. Of 88 candidate biomarkers associated with IGHV somatic mutation status, we identified LDOC1 (Leucine Zipper, Down-regulated in Cancer 1), as one of the most significantly differentially expressed genes that distinguished mutated from unmutated CLL cases. LDOC1 is a putative transcription factor of unknown function in B-cell development and CLL pathophysiology. Using a highly sensitive quantitative RT-PCR (QRT-PCR) assay, we confirmed that LDOC1 mRNA was dramatically down-regulated in mutated compared to unmutated CLL cases. Expression of LDOC1 mRNA was also vii strongly associated with other markers of poor prognosis, including ZAP70 protein and cytogenetic abnormalities of poor prognosis (deletions of chromosomes 6q21, 11q23, and 17p13.1, and trisomy 12). CLL cases positive for LDOC1 mRNA had significantly shorter overall survival than negative cases. Moreover, in a multivariate model, LDOC1 mRNA expression predicted overall survival better than IGHV mutation status or ZAP70 protein, among the best markers of prognosis in CLL. We also discovered LDOC1S, a new LDOC1 splice variant. Using isoform-specific QRT-PCR assays that we developed, we found that both isoforms were expressed in normal B cells (naïve > memory), unmutated CLL cells, and in B-cell non-Hodgkin lymphomas with unmutated IGHV genes. To investigate pathways in which LDOC1 is involved, we knocked down LDOC1 in HeLa cells and performed global gene expression profiling. GFI1 (Growth Factor-Independent 1) emerged as a significantly up-regulated gene in both HeLa cells and CLL cells that expressed high levels of LDOC1. GFI1 oncoprotein is implicated in hematopoietic stem cell maintenance, lymphocyte development, and lymphomagenesis. Our findings indicate that LDOC1 mRNA is an excellent biomarker of overall survival in CLL, and may contribute to B-cell differentiation and malignant transformation.
Resumo:
Although the area under the receiver operating characteristic (AUC) is the most popular measure of the performance of prediction models, it has limitations, especially when it is used to evaluate the added discrimination of a new biomarker in the model. Pencina et al. (2008) proposed two indices, the net reclassification improvement (NRI) and integrated discrimination improvement (IDI), to supplement the improvement in the AUC (IAUC). Their NRI and IDI are based on binary outcomes in case-control settings, which do not involve time-to-event outcome. However, many disease outcomes are time-dependent and the onset time can be censored. Measuring discrimination potential of a prognostic marker without considering time to event can lead to biased estimates. In this dissertation, we have extended the NRI and IDI to survival analysis settings and derived the corresponding sample estimators and asymptotic tests. Simulation studies were conducted to compare the performance of the time-dependent NRI and IDI with Pencina’s NRI and IDI. For illustration, we have applied the proposed method to a breast cancer study.^ Key words: Prognostic model, Discrimination, Time-dependent NRI and IDI ^
Resumo:
Ovarian cancer is the leading cause of cancer-related death for females due to lack of specific early detection method. It is of great interest to find molecular-based biomarkers which are sensitive and specific to ovarian cancer for early diagnosis, prognosis and therapeutics. miRNAs have been proposed to be potential biomarkers that could be used in cancer prevention and therapeutics. The current study analyzed the miRNA and mRNA expression data extracted from the Cancer Genome Atlas (TCGA) database. Using simple linear regression and multiple regression models, we found 71 miRNA-mRNA pairs which were negatively associated between 56 miRNAs and 24 genes of PI3K/AKT pathway. Among these miRNA and mRNA target pairs, 9 of them were in agreement with the predictions from the most commonly used target prediction programs including miRGen, miRDB, miRTarbase and miR2Disease. These shared miRNA-mRNA pairs were considered to be the most potential genes that were involved in ovarian cancer. Furthermore, 4 of the 9 target genes encode cell cycle or apoptosis related proteins including Cyclin D1, p21, FOXO1 and Bcl2, suggesting that their regulator miRNAs including miR-16, miR-96 and miR-21 most likely played important roles in promoting tumor growth through dysregulated cell cycle or apoptosis. miR-96 was also found to directly target IRS-1. In addition, the results showed that miR-17 and miR-9 may be involved in ovarian cancer through targeting JAK1. This study might provide evidence for using miRNA or miRNA profile as biomarker.^
Resumo:
It is well accepted that tumorigenesis is a multi-step procedure involving aberrant functioning of genes regulating cell proliferation, differentiation, apoptosis, genome stability, angiogenesis and motility. To obtain a full understanding of tumorigenesis, it is necessary to collect information on all aspects of cell activity. Recent advances in high throughput technologies allow biologists to generate massive amounts of data, more than might have been imagined decades ago. These advances have made it possible to launch comprehensive projects such as (TCGA) and (ICGC) which systematically characterize the molecular fingerprints of cancer cells using gene expression, methylation, copy number, microRNA and SNP microarrays as well as next generation sequencing assays interrogating somatic mutation, insertion, deletion, translocation and structural rearrangements. Given the massive amount of data, a major challenge is to integrate information from multiple sources and formulate testable hypotheses. This thesis focuses on developing methodologies for integrative analyses of genomic assays profiled on the same set of samples. We have developed several novel methods for integrative biomarker identification and cancer classification. We introduce a regression-based approach to identify biomarkers predictive to therapy response or survival by integrating multiple assays including gene expression, methylation and copy number data through penalized regression. To identify key cancer-specific genes accounting for multiple mechanisms of regulation, we have developed the integIRTy software that provides robust and reliable inferences about gene alteration by automatically adjusting for sample heterogeneity as well as technical artifacts using Item Response Theory. To cope with the increasing need for accurate cancer diagnosis and individualized therapy, we have developed a robust and powerful algorithm called SIBER to systematically identify bimodally expressed genes using next generation RNAseq data. We have shown that prediction models built from these bimodal genes have the same accuracy as models built from all genes. Further, prediction models with dichotomized gene expression measurements based on their bimodal shapes still perform well. The effectiveness of outcome prediction using discretized signals paves the road for more accurate and interpretable cancer classification by integrating signals from multiple sources.