3 resultados para CURE FRACTION MODEL

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies in our laboratory have indicated that heparan sulfate proteoglycans (HSPGs) play an important role in murine embryo implantation. To investigate the potential function of HSPGs in human implantation, two human cell lines (RL95 and JAR) were selected to model uterine epithelium and embryonal trophectoderm, respectively. A heterologous cell-cell adhesion assay showed that initial binding between JAR and RL95 cells is mediated by cell surface glycosaminoglycans (GAG) with heparin-like properties, i.e., heparan sulfate and dermatan sulfate. Furthermore, a single class of highly specific, protease-sensitive heparin/heparan sulfate binding sites exist on the surface of RL95 cells. Three heparin binding, tryptic peptide fragments were isolated from RL95 cell surfaces and their amino termini partially sequenced. Reverse transcription-polymerase chain reaction (RT-PCR) generated 1 to 4 PCR products per tryptic peptide. Northern blot analysis of RNA from RL95 cells using one of these RT-PCR products identified a 1.2 Kb mRNA species (p24). The amino acid sequence predicted from the cDNA sequence contains a putative heparin-binding domain. A synthetic peptide representing this putative heparin binding domain was used to generate a rabbit polyclonal antibody (anti-p24). Indirect immunofluorescence studies on RL95 and JAR cells as well as binding studies of anti-p24 to intact RL95 cells demonstrate that p24 is distributed on the cell surface. Western blots of RL95 membrane preparations identify a 24 kDa protein (p24) highly enriched in the 100,000 g pellet plasma membrane-enriched fraction. p24 eluted from membranes with 0.8 M NaCl, but not 0.6 M NaCl, suggesting that it is a peripheral membrane component. Solubilized p24 binds heparin by heparin affinity chromatography and $\sp{125}$I-heparin binding assays. Furthermore, indirect immunofluorescence studies indicate that cytotrophoblast of floating and attached villi of the human fetal-maternal interface are recognized by anti-p24. The study also indicates that the HSPG, perlecan, accumulates where chorionic villi are attached to uterine stroma and where p24-expressing cytotrophoblast penetrate the stroma. Collectively, these data indicate that p24 is a cell surface membrane-associated heparin/heparan sulfate binding protein found in cytotrophoblast, but not many other cell types of the fetal-maternal interface. Furthermore, p24 colocalizes with HSPGs in regions of cytotrophoblast invasion. These observations are consistent with a role for HSPGs and HSPG binding proteins in human trophoblast-uterine cell interactions. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Every x-ray attenuation curve inherently contains all the information necessary to extract the complete energy spectrum of a beam. To date, attempts to obtain accurate spectral information from attenuation data have been inadequate.^ This investigation presents a mathematical pair model, grounded in physical reality by the Laplace Transformation, to describe the attenuation of a photon beam and the corresponding bremsstrahlung spectral distribution. In addition the Laplace model has been mathematically extended to include characteristic radiation in a physically meaningful way. A method to determine the fraction of characteristic radiation in any diagnostic x-ray beam was introduced for use with the extended model.^ This work has examined the reconstructive capability of the Laplace pair model for a photon beam range of from 50 kVp to 25 MV, using both theoretical and experimental methods.^ In the diagnostic region, excellent agreement between a wide variety of experimental spectra and those reconstructed with the Laplace model was obtained when the atomic composition of the attenuators was accurately known. The model successfully reproduced a 2 MV spectrum but demonstrated difficulty in accurately reconstructing orthovoltage and 6 MV spectra. The 25 MV spectrum was successfully reconstructed although poor agreement with the spectrum obtained by Levy was found.^ The analysis of errors, performed with diagnostic energy data, demonstrated the relative insensitivity of the model to typical experimental errors and confirmed that the model can be successfully used to theoretically derive accurate spectral information from experimental attenuation data. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulmonary fibrosis is a devastating and lethal lung disease with no current cure. Research into cellular signaling pathways able to modulate aspects of pulmonary inflammation and fibrosis will aid in the development of effective therapies for its treatment. Our laboratory has generated a transgenic/knockout mouse with systemic elevations in adenosine due to the partial lack of its metabolic enzyme, adenosine deaminase (ADA). These mice spontaneously develop progressive lung inflammation and severe pulmonary fibrosis suggesting that aberrant adenosine signaling is influencing the development and/or progression of the disease in these animals. These mice also show marked increases in the pro-fibrotic mediator, osteopontin (OPN), which are reversed through ADA therapy that serves to lower lung adenosine levels and ameliorate aspects of the disease. OPN is known to be regulated by intracellular signaling pathways that can be accessed through adenosine receptors, particularly the low affinity A2BR receptor, suggesting that adenosine receptor signaling may be responsible for the induction of OPN in our model. In-vitro, adenosine and the broad spectrum adenosine receptor agonist, NECA, were able to induce a 2.5-fold increase in OPN transcripts in primary alveolar macrophages. This induction was blocked through antagonism of the A2BR receptor pharmacologically, and through the deletion of the receptor subtype in these cells genetically, supporting the hypothesis that the A2BR receptor was responsible for the induction of OPN in our model. These findings demonstrate for the first time that adenosine signaling is an important modulator of pulmonary fibrosis in ADA-deficient mice and that this is in part due to signaling through the A2BR receptor which leads to the induction of the pro-fibrotic molecule, otseopontin. ^