3 resultados para COVERED POLYSTYRENE MICROSPHERES

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dielectrophoresis—the tendency of a material of high dielectric permittivity to migrate in an electrical field gradient to a region of maximum field strength—provides an ideal motive force for manipulating small volumes of biological analytes in microfluidic microsystems. The work described in this thesis was based on the hypothesis that dielectrophoresis could be exploited to provide high-resolution cell separations in microsystems as well as a means for the electrically-controllable manipulation of solid supports for molecular analysis. To this end, a dielectrophoretic/gravitational field-flow-fractionation (DEP/G-FFF) system was developed and the separation performance evaluated using various types and sizes of polystyrene microspheres as model particles. It was shown that separation of the polystyrene beads was based on the differences in their effective dielectrophoretic properties. The ability of an improved DEP/G-FFF system to separate genetically identical, but phenotypically dissimilar cell types was demonstrated using mixtures of 6m2 mutant rat kidney cells grown under transforming and non-transforming culture conditions. Additionally, a panel of engineered dielectric microspheres was designed with specific, predetermined dielectrophoretic properties such that their dielectrophoretic behaviors would be controllable and predictable. The fabrication method involved the use of gold-coated polystyrene microsphere cores coated with a self-assembled monolayer of alkanethiol and, optionally, a self-assembled monolayer of phospholipid to form a thin-insulating-shell-over-conductive-interior structure. The successful development of the DEP/G-FFF separation system and the dielectrically engineered microspheres provides proof-of-principle demonstrations of enabling dielectrophoresis-based microsystem technology that should provide powerful new methods for the manipulation, separation and identification of analytes in many diverse fields. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Tissue engineering techniques offer a potential means to develop a tissue engineered construct (TEC) for the treatment of tissue and organ deficiencies. However, a lack of adequate vascularization is a limiting factor in the development of most viable engineered tissues. Vascular endothelial growth factor (VEGF) could aid in the development of a viable vascular network within TECs. The long-term goals of this research are to develop clinically relevant, appropriately vascularized TECs for use in humans. This project tested the hypothesis that the delivery of VEGF via controlled release from biodegradable microspheres would increase the vascular density and rate of angiogenesis within a model TEC. ^ Materials and methods. Biodegradable VEGF-encapsulated microspheres were manufactured using a novel method entitled the Solid Encapsulation/Single Emulsion/Solvent Extraction technique. Using a PLGA/PEG polymer blend, microspheres were manufactured and characterized in vitro. A model TEC using fibrin was designed for in vivo tissue engineering experimentation. At the appropriate timepoint, the TECs were explanted, and stained and quantified for CD31 using a novel semi-automated thresholding technique. ^ Results. In vitro results show the microspheres could be manufactured, stored, degrade, and release biologically active VEGF. The in vivo investigations revealed that skeletal muscle was the optimal implantation site as compared to dermis. In addition, the TECs containing fibrin with VEGF demonstrated significantly more angiogenesis than the controls. The TECs containing VEGF microspheres displayed a significant increase in vascular density by day 10. Furthermore, TECs containing VEGF microspheres had a significantly increased relative rate of angiogenesis from implantation day 5 to day 10. ^ Conclusions. A novel technique for producing microspheres loaded with biologically active proteins was developed. A defined concentration of microspheres can deliver a quantifiable level of VEGF with known release kinetics. A novel model TEC for in vivo tissue engineering investigations was developed. VEGF and VEGF microspheres stimulate angiogenesis within the model TEC. This investigation determined that biodegradable rhVEGF 165-encapsulated microspheres increased the vascular density and relative rate of angiogenesis within a model TEC. Future applications could include the incorporation of microvascular fragments into the model TEC and the incorporation of specific tissues, such as fat or bone. ^