4 resultados para COUPLED CHUAS CIRCUITS

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many neurons in the mammalian retina are electrically coupled by intercellular channels or gap junctions, which are assembled from a family of proteins called connexins. Numerous studies indicate that gap junctions differ in properties such as conductance and tracer permeability. For example, A-type horizontal cell gap junctions are permeable to Lucifer Yellow, but B-type horizontal cell gap junctions are not. This suggests the two cell types express different connexins. My hypothesis is that multiple neuronal connexins are expressed in the mammalian retina in a cell type specific manner. Immunohistochemical techniques and confocal microscopy were used to localize certain connexins within well-defined neuronal circuits. The results of this study can be summarized as follows: AII amacrine cells, which receive direct input from rod bipolar cells, are well-coupled to neighboring AIIs. In addition, AII amacrine cells also form gap junctions with ON cone bipolar cells. This is a complex heterocellular network. In both rabbit and primate retina, connexin36 occurs at dendritic crossings in the AII matrix as well as between AIIs and ON cone bipolar cells. Coupling in the AII network is thought to reduce noise in the rod pathway while AII/bipolar gap junctions are required for the transmission of rod signals to ON ganglion cells. In the outer plexiform layer, connexin36 forms gap junctions between cones and between rods and cones via cone telodendria. Cone to cone coupling is thought to reduce noise and is partly color selective. Rod to cone coupling forms an alternative rod pathway thought to operate at intermediate light intensity. A-type horizontal cells in the rabbit retina are strongly coupled via massive low resistance gap junctions composed from Cx50. Coupling dramatically extends the receptive field of horizontal cells and the modulation of coupling is thought to change the strength of the feedback signal from horizontal cells to cones. Finally, there are other coupled networks, such as B-type horizontal cells and S1/S2 amacrine cells, which do not use either connexin36 or Cx50. These results confirm the hypothesis that multiple neuronal connexins are expressed in the mammalian retina and these connexins are localized to particular retinal circuits. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The social amoeba, Dictyostelium discoideum, undergoes a remarkable starvation-induced program of development that transforms a population of unicellular amoebae into a fruiting body composed of resistant spores suspended on a stalk. During this development, secreted cAMP drives chemotaxis of the amoebae, leading to their aggregation, and subsequent differentiation and morphogenesis. Four sequentially expressed G protein-coupled receptors (GPCRs) for cAMP play critical roles in this process. The first of these, cAR1, is essential for aggregation as it mediates chemotaxis as well as the propagation of secreted cAMP waves throughout aggregating populations. Ligand-induced internalization has been shown to regulate a variety of GPCRs. However, little was known at the outset of this study about the role of internalization in the regulation of cAR1 function or, for that matter, in developmental systems in general. For this study, cAMP-induced cAR1 internalization was assessed by measuring (1) the reduction of cell surface binding sites for [ 3H]cAMP and (2) the redistribution of YFP-tagged receptors to the cell's interior, cAMP was found to induce little or no loss of ligand binding (LLB) in vegetative cells. However, the ability to induce LLB increased progressively over the initial 6 hrs of development, reaching ∼70% in cells undergoing aggregation. Despite these reductions in surface binding, detectable cAR1-YFP redistribution could be induced by cAMP only after the cells reached the mound stage (10 hrs) and was found to occur naturally by the ensuing slug stage (18 hrs). Site-directed substitution of a cluster of 5 serines in the receptor's cytoplasmic tail that was previously shown to be the principal site of cAMP-induced cAR1 phosphorylation impaired both LLB and receptor redistribution and furthermore resulted in mound-stage developmental arrest, suggesting that phosphorylation of cAR1 is a prerequisite for its internalization and that cAR1 internalization is required for post-aggregative development. To assess the involvement of clathrin mediated endocytosis, Dictyostelium cells lacking the clathrin light chain gene (clc-) or either of two dynamin genes were examined and found to be defective in LLB and, in the case of clc- cells, also cAR1 redistribution and turnover. Furthermore, cAR1 overexpression in clc- cells (like the serine mutant in wild-type cells) promoted developmental arrest in mounds. The mound-arrest phenotype was also recapitulated in a wild-type background by the specific expression of cAR1 in prestalk cells (but not prespore cells), suggesting that development depends critically on internalization and clearance of cAR1 from these cells. Persistent cAR1 expression following aggregation was found to be associated with aberrant expression of prestalk and prespore genes, which may adversely affect development in the prestalk cell lineage. The PI3 kinase-TORC2 signal transduction pathway, known to be important for Dictyostelium chemotaxis and internalization of yeast pheromone receptors, was examined using chemical inhibitors and null cells and found to be necessary for cAR1 internalization. In conclusion, cAR1 was shown to be similar to other GPCRs in that its internalization depends on phosphorylation of cytoplasmic domain serines, utilizes clathrin and dynamin, and involves the TORC2 complex. In addition, the findings presented here that cAR1 internalization is both developmentally regulated and required for normal development represent a novel regulatory paradigm that might pertain to other GPCRs known to play important roles in the development of humans and other metazoans. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the fundamental questions in neuroscience is to understand how encoding of sensory inputs is distributed across neuronal networks in cerebral cortex to influence sensory processing and behavioral performance. The fact that the structure of neuronal networks is organized according to cortical layers raises the possibility that sensory information could be processed differently in distinct layers. The goal of my thesis research is to understand how laminar circuits encode information in their population activity, how the properties of the population code adapt to changes in visual input, and how population coding influences behavioral performance. To this end, we performed a series of novel experiments to investigate how sensory information in the primary visual cortex (V1) emerges across laminar cortical circuits. First, it is commonly known that the amount of information encoded by cortical circuits depends critically on whether or not nearby neurons exhibit correlations. We examined correlated variability in V1 circuits from a laminar-specific perspective and observed that cells in the input layer, which have only local projections, encode incoming stimuli optimally by exhibiting low correlated variability. In contrast, output layers, which send projections to other cortical and subcortical areas, encode information suboptimally by exhibiting large correlations. These results argue that neuronal populations in different cortical layers play different roles in network computations. Secondly, a fundamental feature of cortical neurons is their ability to adapt to changes in incoming stimuli. Understanding how adaptation emerges across cortical layers to influence information processing is vital for understanding efficient sensory coding. We examined the effects of adaptation, on the time-scale of a visual fixation, on network synchronization across laminar circuits. Specific to the superficial layers, we observed an increase in gamma-band (30-80 Hz) synchronization after adaptation that was correlated with an improvement in neuronal orientation discrimination performance. Thus, synchronization enhances sensory coding to optimize network processing across laminar circuits. Finally, we tested the hypothesis that individual neurons and local populations synchronize their activity in real-time to communicate information about incoming stimuli, and that the degree of synchronization influences behavioral performance. These analyses assessed for the first time the relationship between changes in laminar cortical networks involved in stimulus processing and behavioral performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proto-oncogene c-fos is a member of the class of early-response genes whose transient expression plays a crucial role in cell proliferation, differentiation, and apoptosis. Degradation of c- fos mRNA is an important mechanism for controlling c-fos expression. Rapid mRNA turnover mediated by the protein-coding-region determinant (mCRD) of the c-fos transcript illustrates a functional interplay between mRNA turnover and translation that coordinately influences the fate of cytoplasmic mRNA. It is suggested that mCRD communicates with the 3′ poly(A) tail via an mRNP complex comprising mCRD-associated proteins, which prevents deadenylation in the absence of translation. Ribosome transit as a result of translation is required to alter the conformation of the mRNP complex, thereby eliciting accelerated deadenylation and mRNA decay. To gain further insight into the mechanism of mCRD-mediated mRNA turnover, Unr was identified as an mCRD-binding protein, and its binding site within mCRD was characterized. Moreover, the functional role for Unr in mRNA decay was demonstrated. The result showed that elevation of Unr protein level in the cytoplasm led to inhibition of mRNA destabilization by mCRD. In addition, GST pull-down assay and immuno-precipitation analysis revealed that Unr interacted with PABP in an RNA-independent manner, which identified Unr as a novel PABP-interacting protein. Furthermore, the Unr interacting domain in PABP was characterized. In vivo mRNA decay experiments demonstrated a role for Unr-PABP interaction in mCRD-mediated mRNA decay. In conclusion, the findings of this study provide the first evidence that Unr plays a key role in mCRD-mediated mRNA decay. It is proposed that Unr is recruited by mCRD to initiate the formation of a dynamic mRNP complex for communicating with poly(A) tail through PABP. This unique mRNP complex may couple translation to mRNA decay, and perhaps to recruit the responsible nuclease for deadenylation. ^